uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Multinomial Markov-chain model of sleep architecture in Phase Advanced Subjects
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Pharmaceutical Sciences
URN: urn:nbn:se:uu:diva-208582OAI: oai:DiVA.org:uu-208582DiVA: diva2:653346
Available from: 2013-10-03 Created: 2013-10-03 Last updated: 2014-01-23Bibliographically approved
In thesis
1. Benefits of Non-Linear Mixed Effect Modeling and Optimal Design: Pre-Clinical and Clinical Study Applications
Open this publication in new window or tab >>Benefits of Non-Linear Mixed Effect Modeling and Optimal Design: Pre-Clinical and Clinical Study Applications
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Despite the growing promise of pharmaceutical research, inferior experimentation or interpretation of data can inhibit breakthrough molecules from finding their way out of research institutions and reaching patients. This thesis provides evidence that better characterization of pre-clinical and clinical data can be accomplished using non-linear mixed effect modeling (NLMEM) and more effective experiments can be conducted using optimal design (OD). 

To demonstrate applicability of NLMEM and OD in pre-clinical applications, in vitro ligand binding studies were examined. NLMEMs were used to evaluate precision and accuracy of ligand binding parameter estimation from different ligand binding experiments using sequential (NLR) and simultaneous non-linear regression (SNLR). SNLR provided superior resolution of parameter estimation in both precision and accuracy compared to NLR.  OD of these ligand binding experiments for one and two binding site systems including commonly encountered experimental errors was performed.  OD was employed using D- and ED-optimality.  OD demonstrated that reducing the number of samples, measurement times, and separate ligand concentrations provides robust parameter estimation and more efficient and cost effective experimentation.

To demonstrate applicability of NLMEM and OD in clinical applications, a phase advanced sleep study formed the basis of this investigation. A mixed-effect Markov-chain model based on transition probabilities as multinomial logistic functions using polysomnography data in phase advanced subjects was developed and compared the sleep architecture between this population and insomniac patients. The NLMEM was sufficiently robust for describing the data characteristics in phase advanced subjects, and in contrast to aggregated clinical endpoints, which provide an overall assessment of sleep behavior over the night, described the dynamic behavior of the sleep process. OD of a dichotomous, non-homogeneous, Markov-chain phase advanced sleep NLMEM was performed using D-optimality by computing the Fisher Information Matrix for each Markov component.  The D-optimal designs improved the precision of parameter estimates leading to more efficient designs by optimizing the doses and the number of subjects in each dose group. 

This thesis provides examples how studies in drug development can be optimized using NLMEM and OD. This provides a tool than can lower the cost and increase the overall efficiency of drug development.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 65 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, ISSN 1651-6192 ; 181
Pharmacometrics, optimal design, nonlinear mixed effects models, population models
National Category
Pharmaceutical Sciences
Research subject
Pharmaceutical Science
urn:nbn:se:uu:diva-209247 (URN)978-91-554-8779-9 (ISBN)
Public defence
2013-12-06, B22, BMC, Husargatan 3, Uppsala, 09:00 (English)

My name should be listed as "Charles Steven Ernest II" on cover.

Available from: 2013-11-14 Created: 2013-10-15 Last updated: 2014-01-23

Open Access in DiVA

paperIII(933 kB)177 downloads
File information
File name FULLTEXT01.pdfFile size 933 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Ernest II, CharlesKarlsson, Mats O.Hooker, Andrew C.
By organisation
Department of Pharmaceutical Biosciences
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 177 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 180 hits
ReferencesLink to record
Permanent link

Direct link