uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Review on miniaturized paraffin phase change actuators, valves, and pumps
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. (ÅSTC)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Show others and affiliations
2014 (English)In: Microfluidics and Nanofluidics, ISSN 1613-4982, E-ISSN 1613-4990, Vol. 17, no 1, 53-71 p.Article, review/survey (Refereed) Published
Abstract [en]

During the last fifteen years, miniaturised paraffin actuation has evolved through the need of a simple actuation principle, still able to deliver large strokes and high actuation forces at small scales. This is achieved by the large and rather incompressible volume expansion associated with the solid-to-liquid phase transition of paraffin. The common approach has been to encapsulate the paraffin by a stiff surrounding that directs the volume expansion towards a flexible membrane, which deflects in a directed stroke. However, a number of alternative methods have also been used in the literature. The most common applications to this date have been switches, positioning actuators, and microfluidic valves and pumps. This review will treat the historical background, as well as the fundamentals in paraffin actuation, including material properties of paraffin. Besides reviewing the three major groups of paraffin actuator applications; actuators, valves, and pumps, the modelling done on paraffin actuation will be explored. Furthermore, a section focusing on fabrication of paraffin microactuators is also included. The review ends with conclusions and outlook of the field, identifying unexplored potential of paraffin actuation.

Place, publisher, year, edition, pages
2014. Vol. 17, no 1, 53-71 p.
National Category
Applied Mechanics
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
URN: urn:nbn:se:uu:diva-208904DOI: 10.1007/s10404-013-1289-3ISI: 000338835300002OAI: oai:DiVA.org:uu-208904DiVA: diva2:655227
Available from: 2013-11-30 Created: 2013-10-10 Last updated: 2017-12-06Bibliographically approved
In thesis
1. High-Pressure Microfluidics
Open this publication in new window or tab >>High-Pressure Microfluidics
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, some fundamentals and possible applications of high-pressure microfluidics have been explored. Furthermore, handling fluids at high pressures has been addressed, specifically by creating and characterizing strong microvalves and pumps.

A variety of microstructuring techniques was used to realize these microfluidic devices, e.g., etching, lithography, and bonding. To be able to handle high pressures, the valves and pumps need to be strong. This necessitates a strong actuator material. In this thesis, the material of choice is paraffin wax.

A new way of latching paraffin-actuated microvalves into either closed or open position has been developed, using the low thermal conductivity of paraffin to create large thermal gradients within a microactuator. This allows for long open and closed times without power consumption.

In addition, three types of paraffin-actuated pumps are presented: A peristaltic high-pressure pump with integrated temperature control, a microdispensing pump with high repeatability, and a pump system with two pumps working with an offset to reduce flow irregularities. Furthermore, the fundamental behavior of paraffin as a microactuator material has been explored by finite element modeling.

One possibility that arises with high-pressure microfluidics, is the utilization of supercritical fluids for different applications. The unique combination of material properties found in supercritical fluids yields them interesting applications in, e.g., extraction and cleaning. In an attempt to understand the microfluidic behavior of supercritical carbon dioxide, the two-phase flow, with liquid water as the second phase, in a microchannel has been studied and mapped with respect to both flow regime and droplet behavior at a bi-furcating outlet.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 53 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1085
Keyword
phase change, actuator, valve, pump, supercritical fluid
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
urn:nbn:se:uu:diva-208915 (URN)978-91-554-8773-7 (ISBN)
Public defence
2013-11-29, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, 751 21, Uppsala, 09:30 (English)
Opponent
Supervisors
Funder
Swedish Research Council
Available from: 2013-11-07 Created: 2013-10-10 Last updated: 2014-01-23

Open Access in DiVA

fulltext(893 kB)381 downloads
File information
File name FULLTEXT01.pdfFile size 893 kBChecksum SHA-512
406e0d8ff358d1a29e4847997072a39271610cd9af202348d1d67f49253c5bd005883d18043fd2d137af9ff82ac87a9abbb57dbc03a3012c7a66b05b355eeb42
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Ogden, SamKlintberg, LenaThornell, GregerHjort, KlasBodén, Roger

Search in DiVA

By author/editor
Ogden, SamKlintberg, LenaThornell, GregerHjort, KlasBodén, Roger
By organisation
Microsystems Technology
In the same journal
Microfluidics and Nanofluidics
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 381 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 975 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf