uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
1999 (English)In: British Journal of Clinical Pharmacology, ISSN 0306-5251, E-ISSN 1365-2125, Vol. 48, no 4, 528-535 p.Article in journal (Refereed) Published
Abstract [en]

Aims The study aimed to identify the specific human cytochrome P450 (CYP450) enzymes involved in the metabolism of artermisinin. Methods Microsomes from human B-lymphoblastoid cell lines transformed with individual CYP450 cDNAs were investigated for their capacity to metabolize artemisinin. The effect on artemisinin metabolism in human liver microsomes by chemical inhibitors selective for individual forms of CYP450 was investigated. The relative contribution of individual CYP450 isoenzymes to artemisinin metabolism in human liver microsomes was evaluated with a tree-based regression model of: artemisinin disappearance rate and specific CYP450 activities. Results The involvement of CYP2B6 in artermisinin metabolism was demonstrated by metabolism of artemisinin by recombinant CYP2B6, inhibition of artemisinin disappearance in human liver microsomes by orphenadrine (76%) and primary inclusion of CYP2B6 in the tree-based regression model. Recombinant CYP3A4 was catalytically competent in metabolizing artemisinin, although the rate was 10% of that for recombinant CYP2B6. The tree-based regression model suggested CYP3A4 to be of importance in individuals with low CYP2B6 expression. Even though ketoconazole inhibited artemisinin metabolism in human liver microsomes by 46%, incubation with ketoconazole together with orphenadrine did not increase the inhibition of artemisinin metabolism compared to orphenadrine alone. Troleandomycin failed to inhibit artemisinin metabolism. The rate of artemisinin metabolism in recombinant CYP2A6 was 15% of that for recombinant CYP2B6. The inhibition of artemisinin metabolism in human liver microsomes by 8-methoxypsoralen (a CYP2A6 inhibitor)was 82% but CYP2A6 activity was not included in the regression tree. Conclusions Artemisinin metabolism in human liver microsomes is mediated primarily by CYP2B6 with probable secondary contribution of CYP3A4 in individuals with low CYP2B6 expression. The contribution of CYP2A6 to artemisinin metabolism is likely of minor importance.

Place, publisher, year, edition, pages
1999. Vol. 48, no 4, 528-535 p.
Keyword [en]
artemisinin, CYP2B6, CYP3A4, cytochrome p450, metabolism
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-208928ISI: 000082936700009OAI: oai:DiVA.org:uu-208928DiVA: diva2:655462
Available from: 2013-10-11 Created: 2013-10-11 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Svensson, Ulrika S H

Search in DiVA

By author/editor
Svensson, Ulrika S H
By organisation
Department of Pharmacy
In the same journal
British Journal of Clinical Pharmacology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 378 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf