uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Biomechanical and Antibacterial Properties of Tobramycin Loaded Hydroxyapatite Coated Fixation Pins
Christian-Albrechts Universitet Kiel.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Stryker GmbH.
Sandvik Coromant.
Show others and affiliations
2014 (English)In: Journal of Biomedical Materials Research. Part B - Applied biomaterials, ISSN 1552-4973, E-ISSN 1552-4981, Vol. 102, no 7, 1381-1392 p.Article in journal (Refereed) Published
Abstract [en]

The present study investigates the use of nanoporous, biomimetic hydroxyapatite (HA) coatings deposited on TiO2 coated fixation pins as functional implant surfaces for the local release of Tobramycin in order to prevent bacterial colonization. The impact of HA-coating thickness, coating morphology and biomechanical forces during insertion into synthetic bone on the drug loading and release properties are analyzed. The coatings are shown to exhibit bactericidal effects against Staphylococcus aureus in agar medium for a duration of 6 days after loading by adsorption with Tobramycin for only 5 min at elevated temperature and pressure. Furthermore, high performance liquid chromatography analysis shows a drug release in phosphate buffered saline for 8 days with antibiotic concentration remaining above the minimal inhibitory concentration for S. aureus during the entire release period. Biomechanical insertion tests into synthetic bone and conventional scratch testing demonstrate adhesive strength at the HA/TiO2 interface. Biocompatibility is verified by cell viability tests. Outgrowth endothelial cells, as well as primary osteoblasts, are viable and firmly attached to both HA and TiO2 surfaces. The results presented are encouraging and support the concept of functional HA coatings as local drug delivery vehicles for biomedical applications to treat as well as to prevent post-surgical infections.

Place, publisher, year, edition, pages
2014. Vol. 102, no 7, 1381-1392 p.
National Category
Medical Materials
URN: urn:nbn:se:uu:diva-209043DOI: 10.1002/jbm.b.33117OAI: oai:DiVA.org:uu-209043DiVA: diva2:655810
Available from: 2013-10-14 Created: 2013-10-14 Last updated: 2015-09-10Bibliographically approved
In thesis
1. Bioactive Surgical Implant Coatings with Optional Antibacterial Function
Open this publication in new window or tab >>Bioactive Surgical Implant Coatings with Optional Antibacterial Function
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Device associated infections are a growing problem in the field of orthopaedics and dentistry. Bacteria adhering to implant surfaces and subsequent biofilm formation are challenging to treat with systemic administered antibiotics. Functionalization of implant surfaces with therapeutic coatings that are capable of inhibiting bacterial adhesion are therefore considered as a straight forward strategy to treat and prevent implant related infections.

In this thesis, the use of crystalline, arc deposited TiO2 and biomimetic hydroxyapatite (HA) coatings were evaluated with respect to their potential as antibacterial surface modifications for bone-anchored implants.

UV light induced photocatalysis of anatase dominated TiO2 coated surfaces was shown to provide a bactericidal effect against S. epidermidis under clinically relevant illumination times and doses.

Major parts of the drug release work carried out was based on biomimetic HA (HA-B) coated fixation pins. The analysis of the coating characteristics revealed that the nanoporous structure of HA-B coatings in addition to the chemical composition and surface charge are essential parameters that influence the drug carrier performance. Loading by adsorption was demonstrated to be a feasible approach to quickly incorporate antibiotics. The controlled release of antibiotics was shown to facilitate bactericidal effects against S. aureus over application-relevant time periods, even when exposed to biomechanical forces during insertion into bone model materials. Antibiotic incorporation during coating growth was shown to promote somewhat longer drug release time periods than those obtained using adsorption loading.

In summary, functionalization of implant surfaces with bioactive and biocompatible coatings is a promising concept to impact the clinical success for bone-anchored applications. The additional feature of optional, on-demand antibacterial properties of these coatings through either on-site drug release or photocatalytic antibacterial treatment is advantageous for the prevention and effective treatment of devices-associated infections. Both strategies provide an immediate response to the implant contamination by bacteria and are believed to contribute towards minimizing the origin of post-surgical infections, while at the same time improving the interfacial stability between implant and bone.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 60 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1091
Hydroxyapatite, titanium dioxide, photocatalysis, antibacterial effect, antibiotic release, biomimetic coating, co-precipitation, tobramycin
National Category
Medical Materials Materials Engineering
urn:nbn:se:uu:diva-209283 (URN)978-91-554-8782-9 (ISBN)
Public defence
2013-12-05, Room Å2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (English)
Available from: 2013-11-13 Created: 2013-10-16 Last updated: 2014-01-23

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Strömme, Maria
By organisation
Nanotechnology and Functional Materials
In the same journal
Journal of Biomedical Materials Research. Part B - Applied biomaterials
Medical Materials

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 394 hits
ReferencesLink to record
Permanent link

Direct link