uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Configuration- and Conformation-Dependent Electronic Structure Variations in 1,4-Disubstituted Cyclohexanes Enabled by a Carbon-to-Silicon Exchange
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Physical Organic Chemistry. Institut für Anorganische Chemie, Technische Universität Graz.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
Show others and affiliations
2014 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 30, 9304-9311 p.Article in journal (Other academic) Published
Abstract [en]

Cyclohexane, with its well-defined conformers, could be an ideal force-controlled molecular switch if it were to display substantial differences in electronic and optical properties between its conformers. We utilize sigma conjugation in heavier analogues of cyclohexanes (i.e. cyclohexasilanes) and show that 1,4-disubstituted cyclohexasilanes display configuration-and conformation-dependent variations in these properties. Cis- and trans-1,4-bis(trimethylsilylethynyl)-cyclohexasilanes display a 0.11 V difference in their oxidation potentials (computed 0.11 V) and a 0.34 eV difference in their lowest UV absorption (computed difference between first excitations 0.07 eV). This is in stark contrast to differences in the corresponding properties of analogous all-carbon cyclohexanes (computed 0.02 V and 0.03 eV, respectively). Moreover, the two chair conformers of the cyclohexasilane trans isomer display large differences in electronic-structure-related properties. This enables computational design of a mechanically force-controlled conductance switch with a calculated single-molecule ON/OFF ratio of 213 at zero-bias voltage.

Place, publisher, year, edition, pages
2014. Vol. 20, no 30, 9304-9311 p.
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-209259DOI: 10.1002/chem.201402610ISI: 000339568800023OAI: oai:DiVA.org:uu-209259DiVA: diva2:656505
Note

De 2 sista författarna delar sistaförfattarskapet.

Available from: 2013-10-16 Created: 2013-10-16 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Computational Studies of Electron Transport in Nanoscale Devices
Open this publication in new window or tab >>Computational Studies of Electron Transport in Nanoscale Devices
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, a combination of density functional theory (DFT) based calculations and nonequilibrium Green’s functions are employed to investigate electron transport in molecular switches, molecular cords and nanoscale devices.

  Molecular electronic devices have been proposed as an approach to complement today’s silicon based electronic devices. However, engineering of such miniature devices and design of functional molecular components still present significant challenges.

  First, the way to connect a molecule to conductive electrodes has to be controlled. We study, in a nanoelectrode-nanoparticle platform, how structural changes affect the measured conductance and how current fluctuations due to these structural changes can be decreased. We find that, for reproducible measurements, it is important to have the molecules chemically bonded to the surfaces of adjacent nanoparticles. Furthermore, we show by a combination of DFT and theoretical modeling that we can identify signals from single-molecules in inelastic electron spectroscopy measurements on these devices.

  Second, active elements based on molecules, some examples being switches, rectifiers or memory devices, have to be designed. We study molecular conductance switches that can be operated by light and/or temperature. By tuning the substituents on the molecules, we can optimize the shift of the most conducting molecular orbital and increase the effective coupling between the molecule and the electrodes when going from the OFF to the ON-state of the switches, giving high switching ratio (up to three orders of magnitude). We also study so called mechanoswitches that are activated by a mechanical force elongating the molecules, which means that these switches could operate as sensors.

  Furthermore, we have studied two different classes of compounds that may function either as rigid molecular spacers with a well-defined conductance or as molecular cords. In both cases, we find that it is of great importance to match the conjugation of the anchoring groups with the molecular backbone for high conductance.

  The last part of the thesis is devoted to another interesting semiconductor material, diamond. We have accurately calculated the band structure and effective masses for this material. Furthermore, these results have been used to calculate the Hall coefficient, the resistivity and the Seebeck coefficient.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. i-x, 89 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1090
Keyword
Density functional theory, Molecular electronics, Organosilicon chemistry, Diamond, Molecular switches, Nanoelectrode bridge platform, Molecular cords
National Category
Condensed Matter Physics Physical Chemistry
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-209261 (URN)978-91-554-8781-2 (ISBN)
Public defence
2013-11-29, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2013-11-08 Created: 2013-10-16 Last updated: 2014-01-23
2. Conjugation in Organic Group 14 Element Compounds: Design, Synthesis and Experimental Evaluation
Open this publication in new window or tab >>Conjugation in Organic Group 14 Element Compounds: Design, Synthesis and Experimental Evaluation
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on the chemical concept of conjugation, i.e., electron delocalization, and the effect it has on electronic and optical properties of molecules. The emphasis is on electron delocalization across a saturated σ-bonded segment, and in our studies these segments are either inserted between π-conjugated moieties or joined together to form longer chains. The electronic and optical properties of these compounds are probed and compared to those of traditionally π-conjugated compounds. The investigations utilize a combination of qualitative chemical bonding theories, quantum chemical calculations, chemical syntheses and different spectroscopic methods.

Herein, it is revealed that a saturated σ-bonded segment inserted between two π-systems can have optical and electronic properties similar to a cross-conjugated compound when substituents with heavy Group 14 elements (Si, Ge or Sn) are attached to the central atom. We coined the terminology cross-hyperconjugation for this interaction, and have shown it by both computational and spectroscopic means. This similarity is also found in cyclic compounds, for example in the 1,4-disilacyclohexa-2,5-dienes, as we reveal that there is a cyclic aspect of cross-hyperconjugation. Cross-hyperconjugation can further also be found in smaller rings such as siloles and cyclopentadienes, and we show on the similarities between these and their cross-π-conjugated analogues, the fulvenes. Here, this concept is combined with that of excited state aromaticity and the electronic properties of these systems are rationalized in terms of “aromatic chameleon” effects. We show that the optical properties of these systems can be rationally tuned and predicted through the choice of substituents and knowledge about the aromaticity rules in both ground and excited states.

We computationally examine the relation between conjugation and conductance and reveal that oligomers of 1,4-disilacyclohexa-2,5-dienes and related analogues can display molecular cord properties. The conductance through several σ-conjugated silicon compounds were also examined and show that mixed silicon and carbon bicyclo[2.2.2]octane compounds do not provide significant benefits over the open-chain oligosilanes. However, cyclohexasilanes, a synthetic precursor to the bicyclic compounds, displayed conformer-dependent electronic structure variations that were not seen for cyclohexanes. This allowed for computational design of a mechanically activated conductance switch.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 70 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1140
Keyword
conjugation, conductance, electronic structure, Group 14 elements, hyperconjugation, molecular electronics, organosilicon chemistry
National Category
Organic Chemistry Physical Chemistry
Research subject
Chemistry with specialization in Organic Chemistry
Identifiers
urn:nbn:se:uu:diva-221683 (URN)978-91-554-8929-8 (ISBN)
Public defence
2014-05-27, B42, BMC, Husargatan 3, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2014-05-06 Created: 2014-04-03 Last updated: 2014-06-30

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Emanuelsson, RikardLöfås, HenrikAhuja, RajeevOtt, SaschaGrigoriev, AntonOttosson, Henrik

Search in DiVA

By author/editor
Emanuelsson, RikardLöfås, HenrikAhuja, RajeevOtt, SaschaGrigoriev, AntonOttosson, Henrik
By organisation
Physical Organic ChemistryMaterials TheoryDepartment of Chemistry - ÅngströmMolecular Biomimetics
In the same journal
Chemistry - A European Journal
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 911 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf