uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Designing the 3D-microbattery geometry using the level-set method
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Show others and affiliations
2013 (English)In: Journal of Power Sources, ISSN 0378-7753, Vol. 244, 417-428 p.Article in journal, Meeting abstract (Refereed) Published
Abstract [en]

Strategies for automatic design of power-optimized 3D-microbattery geometries are here investigated by utilization of the level-set method with structure topology optimization. The methodology is extended from solid mechanics to electrochemical systems, where battery operation is simulated using the Nernst-Planck equation. The calculations are carried out for the 3D-"trench" geometry with LiCoO2 and LiC6 as electrodes, separated with a LiPF6 center dot PEO20 Polyethylene oxide polymer electrolyte. With the goal to achieve a maximum uniform electrochemical activity over the electrode surface area, an optimized electrode design is produced by coating the current collectors non-uniformly with active material. This is shown to be an effect of the 3D design of the cell. Evaluation of the resulting optimized cell by simulations of the discharge process demonstrates uniform electrode material utilization and almost uniform current density distribution over the entire electrode-electrolyte interface. Comparisons between optimized and non-optimized geometries showed that the geometry optimization increased the cell performance up to 2.25 times. This effect is mainly achieved by minimizing the internal energy losses caused by non-uniformities in the ionic transport in the battery.

Place, publisher, year, edition, pages
2013. Vol. 244, 417-428 p.
Keyword [en]
3D-microbattery, Level-set method, Geometry optimization, Finite element simulations
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-209452DOI: 10.1016/j.jpowsour.2012.12.004ISI: 000324511600060OAI: oai:DiVA.org:uu-209452DiVA: diva2:659141
16th International Meeting on Lithium Batteries (IMLB), 17-22 Jun, 2012, Jeju, Korea
Available from: 2013-10-24 Created: 2013-10-21 Last updated: 2013-10-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Brandell, DanielAabloo, Alvo
By organisation
Structural Chemistry
In the same journal
Journal of Power Sources
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 388 hits
ReferencesLink to record
Permanent link

Direct link