uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Solar cycle modulation of Titan's ionosphere
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division. Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Space Plasma Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2013 (English)In: Journal of Geophysical Research-Space Physics, ISSN 2169-9380, Vol. 118, no 8, 5255-5264 p.Article in journal (Refereed) Published
Abstract [en]

During the six Cassini Titan flybys T83-T88 (May 2012 to November 2012) the electron density in the ionospheric peak region, as measured by the radio and plasma wave science instrument/Langmuir probe, has increased significantly, by 15-30%, compared to previous average. These measurements suggest that a longterm change has occurred in the ionosphere of Titan, likely caused by the rise to the new solar maximum with increased EUV fluxes. We compare measurements from TA, TB, and T5, from the declining phase of solar cycle 23 to the recent T83-T88 measurements during cycle 24, since the solar irradiances from those two intervals are comparable. The peak electron densities normalized to a common solar zenith angle N-norm from those two groups of flybys are comparable but increased compared to the solar minimum flybys (T16-T71). The integrated solar irradiance over the wavelengths 1-80nm, i.e., the solar energy flux, F-e, correlates well with the observed ionospheric peak density values. Chapman layer theory predicts that Nnorm<mml:msubsup>Fek</mml:msubsup>, with k=0.5. We find observationally that the exponent k=0.540.18. Hence, the observations are in good agreement with theory despite the fact that many assumptions in Chapman theory are violated. This is also in good agreement with a similar study by Girazian and Withers (2013) on the ionosphere of Mars. We use this power law to estimate the peak electron density at the subsolar point of Titan during solar maximum conditions and find it to be about 6500cm(-3), i.e., 85-160% more than has been measured during the entire Cassini mission.

Place, publisher, year, edition, pages
2013. Vol. 118, no 8, 5255-5264 p.
Keyword [en]
Titan, Cassini, solar cycle, ionosphere
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-210262DOI: 10.1002/jgra.50463ISI: 000324992300048OAI: oai:DiVA.org:uu-210262DiVA: diva2:661859
Available from: 2013-11-05 Created: 2013-11-04 Last updated: 2014-03-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Edberg, Niklas J. T.Andrews, David J.Shebanits, OlegWahlund, Jan-ErikOpgenoorth, Hermann J.

Search in DiVA

By author/editor
Edberg, Niklas J. T.Andrews, David J.Shebanits, OlegWahlund, Jan-ErikOpgenoorth, Hermann J.
By organisation
Swedish Institute of Space Physics, Uppsala DivisionSpace Plasma Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 887 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf