uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
MR Spectroscopy of the Prostate at 3T: Measurements of Relaxation Times and Quantification of Prostate Metabolites using Water as an Internal Reference
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Radiology.
2013 (English)In: Magnetic resonance in medical sciences, ISSN 1347-3182, Vol. 12, no 4, 289-296 p.Article in journal (Refereed) Published
Abstract [en]

Purpose:

We performed single-voxel magnetic resonance spectroscopy (MRS) of the human prostate at 3 tesla using a surface coil to measure prostate water, choline (Cho), creatine (Cr), and citrate (Cit) relaxation times T1, T2, and to estimate concentrations of Cho, Cr, and Cit in healthy volunteers.

Methods:

In nine of 17 healthy volunteers, we performed experiments to estimate relaxation time, and we used the spectra of the other eight to compute metabolite concentrations. Spectra were processed by LCModel and AMARES (advanced method for accurate, robust, and efficient spectral fitting) algorithms. T1 and T2 values were obtained by monoexponential fitting of the spectral intensities. Metabolite concentrations were estimated using prostate tissue water as an internal concentration reference.

Results:

Relaxation times are reported for prostate water (T1, 2163±166 ms; T2, 110±18 ms), Cho (T1, 987±71 ms; T2, 239±24 ms), Cr (T1, 1128±149 ms; T2, 188±20 ms), and Cit (T1, 476±70 ms; T2, 228±42 ms). Mean concentrations in healthy prostate were Cho, 2.6±0.3 mM, Cr, 5.8±1.3 mM, and Cit, 26.9±5.5 mM.

Conclusion:

We observed metabolite relaxation times and concentrations consistent with published values of healthy volunteers at 1.5 and 3T. T1 values increased and T2 slightly decreased with magnetic field strength. Our preliminary patient results indicate that water-referenced quantitative MRS of the human prostate is a promising tool for monitoring therapeutic effects and detecting tumor relapse, i.e., in situations when Cit intensity is small or undetectable.

Place, publisher, year, edition, pages
2013. Vol. 12, no 4, 289-296 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-210384DOI: 10.2463/mrms.2013-0017ISI: 000328795500006PubMedID: 24172792OAI: oai:DiVA.org:uu-210384DiVA: diva2:662234
Available from: 2013-11-06 Created: 2013-11-06 Last updated: 2014-01-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Weis, JanOrtiz-Nieto, FranciscoAhlström, Håkan

Search in DiVA

By author/editor
Weis, JanOrtiz-Nieto, FranciscoAhlström, Håkan
By organisation
Radiology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 468 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf