uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Iceland's best kept secret
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
Show others and affiliations
2014 (English)In: Geology Today, ISSN 0266-6979, E-ISSN 1365-2451, Vol. 30, no 2, 54-60 p.Article in journal (Refereed) Published
Abstract [en]

The ‘forgotten fjords’ and ‘deserted inlets’ of NE-Iceland, in the region between Borgarfjörður Eystri and Loðmundarfjörður, are not only prominent because of their pristine landscape, their alleged elfin settlements, and the puffins that breed in the harbour, but also for their magnificent geology. From a geological point of view, the area may hold Iceland's best kept geological secret. The greater Borgarfjörður Eystri area hosts mountain chains that consist of voluminous and colourful silicic rocks that are concentrated within a surprisingly small area (Fig. 1), and that represent the second-most voluminous occurrence of silicic rocks in the whole of Iceland. In particular, the presence of unusually large volumes of ignimbrite sheets documents extremely violent eruptions during the Neogene, which is atypical for this geotectonic setting. As a group of geoscientists from Uppsala University (Sweden) and the Nordic Volcanological Center (NordVulk, Iceland) we set out to explore this remote place, with the aim of collecting material that may allow us to unravel the petrogenesis of these large volumes of silicic rocks. This effort could provide an answer to a long-standing petrological dilemma; the question of how silicic continental crust is initially created. Here we document on our geological journey, our field strategy, and describe our field work in the remote valleys of NE-Iceland.

Place, publisher, year, edition, pages
2014. Vol. 30, no 2, 54-60 p.
National Category
Geosciences, Multidisciplinary
Research subject
Earth Science with specialization in Mineral Chemistry, Petrology and Tectonics
Identifiers
URN: urn:nbn:se:uu:diva-213020DOI: DOI: 10.1111/gto.12042OAI: oai:DiVA.org:uu-213020DiVA: diva2:680236
Available from: 2013-12-17 Created: 2013-12-17 Last updated: 2017-12-06
In thesis
1. Silicic Magma Genesis in Basalt-dominated Oceanic Settings: Examples from Iceland and the Canary Islands
Open this publication in new window or tab >>Silicic Magma Genesis in Basalt-dominated Oceanic Settings: Examples from Iceland and the Canary Islands
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The origin of silicic magma in basalt-dominated oceanic settings is fundamental to our understanding of magmatic processes and formation of the earliest continental crust. Particularly significant is magma-crust interaction that can modify the composition of magma and the dynamics of volcanism. This thesis investigates silicic magma genesis on different scales in two ocean island settings. First, volcanic products from a series of voluminous Neogene silicic centres in northeast Iceland are investigated using rock and mineral geochemistry, U-Pb geochronology, and oxygen isotope analysis. Second, interfacial processes of magma-crust interaction are investigated using geochemistry and 3D X-ray computed microtomography on crustal xenoliths from the 2011-12 El Hierro eruption, Canary Islands.

The results from northeast Iceland constrain a rapid outburst of silicic magmatism driven by a flare of the Iceland plume and/or by formation of a new rift zone, causing large volume injection of basaltic magma into hydrated basaltic crust. This promoted crustal recycling by partial melting of the hydrothermally altered Icelandic crust, thereby producing mixed-origin silicic melt pockets that reflect the heterogeneous nature of the crustal protolith with respect to oxygen isotopes. In particular, a previously unrecognised high-δ18O end-member on Iceland was documented, which implies potentially complex multi-component assimilation histories for magmas ascending through the Icelandic crust. Common geochemical traits between Icelandic and Hadean zircon populations strengthen the concept of Iceland as an analogue for early Earth, implying that crustal recycling in emergent rifts was pivotal in generating Earth’s earliest continental silicic crust.

Crustal xenoliths from the El Hierro 2011-2012 eruption underline the role of partial melting and assimilation of pre-island sedimentary layers in the early shield-building phase of ocean islands. This phenomenon may contribute to the formation of evolved magmas, and importantly, the release of volatiles from the xenoliths may be sufficient to increase the volatile load of the magma and temporarily alter the character and intensity of an eruption.

This thesis sheds new light on the generation of silicic magma in basalt-dominated oceanic settings and emphasises the relevance of magma-crust interaction for magma evolution, silicic crust formation, and eruption style from early Earth to present.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 54 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1338
Keyword
Silicic magmatism, Iceland, magma-crust interaction, proto-continental crust, early Earth, zircon geochronology and geochemistry, oxygen isotopes, 2011-2012 El Hierro eruption, crustal xenoliths, 3D X-ray μ-CT, volatiles
National Category
Geochemistry Geology
Research subject
Earth Science with specialization in Mineral Chemistry, Petrology and Tectonics
Identifiers
urn:nbn:se:uu:diva-272318 (URN)978-91-554-9454-4 (ISBN)
Public defence
2016-03-03, Hambergsalen, Geocentrum, Villavägen 16, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2016-02-11 Created: 2016-01-13 Last updated: 2016-02-19

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Berg, SylviaTroll, ValentinBurchardt, SteffiKrumbholz, Michael

Search in DiVA

By author/editor
Berg, SylviaTroll, ValentinBurchardt, SteffiKrumbholz, Michael
By organisation
Solid Earth Geology
In the same journal
Geology Today
Geosciences, Multidisciplinary

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 571 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf