uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Adhesion of the iron-chromium oxide interface from first-principles theory
Show others and affiliations
2013 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 25, no 49, 495501- p.Article in journal (Refereed) Published
Abstract [en]

We determine the interface energy and the work of separation of the Fe/Cr2O3 interface using first-principles density functional theory. Starting from different structures, we put forward a realistic interface model that is suitable to study the complex metal-oxide interaction. This model has the lowest formation energy and corresponds to an interface between Fe and oxygen terminated Cr2O3. The work of separation is calculated to be smaller than the intrinsic adhesion energy of pure Fe or Cr2O3, suggesting that stainless steel surfaces should preferentially break along the metal-oxide interface. The relative stabilities and magnetic interactions of the different interfaces are discussed. Next we introduce Cr atoms into the Fe matrix at different positions relative to the interface. We find that metallic Cr segregates very strongly to the (FeCr)/Cr2O3 interface, and increases the separation energy of the interface, making the adhesion of the oxide scale mechanically more stable. The Cr segregation is explained by the enthalpy of formation.

Place, publisher, year, edition, pages
2013. Vol. 25, no 49, 495501- p.
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-212825DOI: 10.1088/0953-8984/25/49/495501ISI: 000327181400006OAI: oai:DiVA.org:uu-212825DiVA: diva2:680496
Available from: 2013-12-18 Created: 2013-12-16 Last updated: 2013-12-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Delczeg-Czirjak, Erna K.Johansson, BörjeVitos, Levente
By organisation
Materials Theory
In the same journal
Journal of Physics: Condensed Matter
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 161 hits
ReferencesLink to record
Permanent link

Direct link