uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Water and ion transport in ultra-adsorbing porous magnesium carbonate studied by dielectric spectroscopy
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. Univ Bourgogne, CNRS, Lab Interdisciplinaire Carnot Bourgogne ICB, UMR 6303, Dijon, France.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials. (Nanoteknologi och funktionella material)
Show others and affiliations
2014 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 115, no 4, 044306Article in journal (Refereed) Published
Abstract [en]

Porous materials are used in application areas ranging from drug and vaccine delivery, medical implants, molecular sieves and cosmetics to catalysis and humidity control. In the present work, we employed an alternative approach to gain in-depth understanding about water interaction properties in such materials by the use of dielectric spectroscopy and thereby show that it is possible to obtain information that is not accessible from the more commonly employed water interaction analysis techniques. Specifically, the complex dielectric response of Upsalite, a novel, super-hydroscopic, high-surface area, porous magnesium carbonate material was measured in isothermal frequency scans between 10−3 and 106 Hz at controlled relative humidity (RH). We found the dielectric constant of the dry material to be 1.82. The ratio of bound to free water present in Upsalite after adsorption at room temperature was found to be high irrespective of the surrounding humidity with values ranging from ∼67% to ∼90%. We further found that OH ions are the charge carriers responsible for the electrode polarization observed in the dielectric response and that the amount of these ions that are free to move in the material corresponds to a concentration of the order of 1–10 μmol l−1 independent of RH. Finally, the OH diffusion coefficient displayed a drastic decrease with decreasing RH, typical of transport in unsaturated conditions. The presented results provide detailed insight about water interactions in the novel water adsorbing material under study and it is foreseen that the employed analysis methods can be used to evaluate other types of moisture adsorbing materials as well as the movement of functional species in the pores of inorganic drug delivery materials and materials tailored for adsorption of harmful charged species.

Place, publisher, year, edition, pages
2014. Vol. 115, no 4, 044306
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-213563DOI: 10.1063/1.4860276ISI: 000331210800098OAI: oai:DiVA.org:uu-213563DiVA: diva2:682596
Available from: 2013-12-28 Created: 2013-12-28 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Frykstrand, SaraForsgren, JohanStrømme, Maria

Search in DiVA

By author/editor
Frykstrand, SaraForsgren, JohanStrømme, Maria
By organisation
Nanotechnology and Functional Materials
In the same journal
Journal of Applied Physics
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 822 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf