uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
A particle based simulation model for glacier dynamics
CSC – IT Center for Science, P.O. Box 405, 02101, Esbo, Finland.
Show others and affiliations
2013 (English)In: The Cryosphere, ISSN 1994-0416, E-ISSN 1994-0424, Vol. 7, no 5, 1591-1602 p.Article in journal (Refereed) Published
Abstract [en]

A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the model, large ice bodies are made of discrete elastic particles which are bound together by massless elastic beams. These beams can break, which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. Two simulations were performed: (1) calving of an ice block partially supported in water, similar to a grounded marine glacier terminus, and (2) fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. Despite several approximations, including restriction to two-dimensions and simplified water-ice interaction, the model was able to reproduce the size distributions of the debris observed in calving, which may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable and quiescent as long as there was enough of friction against the substrate. For a critical length of frictional contact, global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.

Place, publisher, year, edition, pages
2013. Vol. 7, no 5, 1591-1602 p.
National Category
Physical Geography
Research subject
Physical Geography
URN: urn:nbn:se:uu:diva-214792DOI: 10.5194/tc-7-1591-2013ISI: 000328544800020OAI: oai:DiVA.org:uu-214792DiVA: diva2:685612
Available from: 2014-01-09 Created: 2014-01-09 Last updated: 2014-01-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Moore, John C
By organisation
In the same journal
The Cryosphere
Physical Geography

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 428 hits
ReferencesLink to record
Permanent link

Direct link