uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal control of gene expression for fast proteome adaptation to environmental change
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
2013 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 110, no 51, 20527-20532 p.Article in journal (Refereed) Published
Abstract [en]

Bacterial populations growing in a changing world must adjust their proteome composition in response to alterations in the environment. Rapid proteome responses to growth medium changes are expected to increase the average growth rate and fitness value of these populations. Little is known about the dynamics of proteome change, e. g., whether bacteria use optimal strategies of gene expression for rapid proteome adjustments and if there are lower bounds to the time of proteome adaptation in response to growth medium changes. To begin answering these types of questions, we modeled growing bacteria as stoichiometrically coupled networks of metabolic pathways. These are balanced during steady-state growth in a constant environment but are initially unbalanced after rapid medium shifts due to a shortage of enzymes required at higher concentrations in the new environment. We identified an optimal strategy for rapid proteome adjustment in the absence of protein degradation and found a lower bound to the time of proteome adaptation after medium shifts. This minimal time is determined by the ratio between the Kullback-Leibler distance from the pre- to the postshift proteome and the postshift steady-state growth rate. The dynamics of optimally controlled proteome adaptation has a simple analytical solution. We used detailed numerical modeling to demonstrate that realistic bacterial control systems can emulate this optimal strategy for rapid proteome adaptation. Our results may provide a conceptual link between the physiology and population genetics of growing bacteria.

Place, publisher, year, edition, pages
2013. Vol. 110, no 51, 20527-20532 p.
Keyword [en]
bacterial adaptation, protein synthesis, control theory, on-off control
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-215277DOI: 10.1073/pnas.1309356110ISI: 000328548600048OAI: oai:DiVA.org:uu-215277DiVA: diva2:687104
Available from: 2014-01-13 Created: 2014-01-13 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Pavlov, Michael Y.Ehrenberg, Måns

Search in DiVA

By author/editor
Pavlov, Michael Y.Ehrenberg, Måns
By organisation
Structure and Molecular Biology
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 456 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf