uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inversion of airborne tensor VLF data using integral equations
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Geophysics.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Geophysics. Geological Survey of Sweden.
2014 (English)In: Geophysical Journal International, ISSN 0956-540X, E-ISSN 1365-246X, Vol. 198, no 2, 775-794 p.Article in journal (Refereed) Published
Abstract [en]

The Geological Survey of Sweden has been collecting airborne tensor very low frequency data (VLF) over several decades, covering large parts of the country. The data has been an invaluable source of information for identifying conductive structures that can among other things be related to water-filled fault zones, wet sediments that fill valleys or ore mineralizations. Because the method only uses two differently polarized plane waves of very similar frequency, vertical resolution is low and interpretation is in most cases limited to maps that are directly derived from the data. Occasionally, 2-D inversion is carried out along selected profiles. In this paper, we present for the first time a 3-D inversion for tensor VLF data in order to further increase the usefulness of the data set. The inversion is performed using a non-linear conjugate gradient scheme (Polak-RibiSre) with an inexact line-search. The gradient is obtained by an algebraic adjoint method that requires one additional forward calculation involving the adjoint system matrix. The forward modelling is based on integral equations with an analytic formulation of the half-space Green's tensor. It avoids typically required Hankel transforms and is particularly amenable to singularity removal prior to the numerical integration over the volume elements. The system is solved iteratively, thus avoiding construction and storage of the dense system matrix. By using fast 3-D Fourier transforms on nested grids, subsequently farther away interactions are represented with less detail and therefore with less computational effort, enabling us to bridge the gap between the relatively short wavelengths of the fields (tens of metres) and the large model dimensions (several square kilometres). We find that the approximation of the fields can be off by several per cent, yet the transfer functions in the air are practically unaffected. We verify our code using synthetic calculations from well-established 2-D methods, and trade modelling accuracy off against computational effort in order to keep the inversion feasible in both respects. Our compromise is to limit the permissible resistivity to not fall below 100 Omega m to maintain computational domains as large as 10 x 10 km(2) and computation times on the order of a few hours on standard PCs. We investigate the effect of possible local violations of these limits. Even though the conductivity magnitude can then not be recovered correctly, we do not observe any structural artefacts related to this in our tests. We invert a data set from northern Sweden, where we find an excellent agreement of known geological features, such as contacts or fault zones, with elongated conductive structures, while high resistivity is encountered in probably less disturbed geology, often related to topographic highs, which have survived predominantly glacial erosion processes. As expected from synthetic studies, the resolution is laterally high, but vertically limited down to the top of conductive structures.

Place, publisher, year, edition, pages
2014. Vol. 198, no 2, 775-794 p.
Keyword [en]
Electromagnetic theory, Electrical properties, Numerical approximations and analysis, Numerical solutions, Inverse theory
National Category
Geophysics
Research subject
Geophysics with specialization in Solid Earth Physics
Identifiers
URN: urn:nbn:se:uu:diva-215658DOI: 10.1093/gji/ggu161ISI: 000339717700009OAI: oai:DiVA.org:uu-215658DiVA: diva2:688080
Available from: 2014-01-15 Created: 2014-01-15 Last updated: 2017-12-06
In thesis
1. Inversion and Joint Inversion of Electromagnetic and Potential Field Data
Open this publication in new window or tab >>Inversion and Joint Inversion of Electromagnetic and Potential Field Data
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[de]
Inversion und kombinierte Inversion von elektromagnetischen und Potentialfelddaten
Abstract [en]

In this thesis, four inversion problems of different scale and difficulty are solved. Two of them are electromagnetic inverse problems. Two more are joint inversion problems of potential field data and other types of data. First, a linear approximation, which is a generalization of the low-induction-number approximation standard in slingram dual-loop interpretation is developed and used for rapid two and three dimensional inversion. The approximation takes induction within a background half-space into account and can thus be applied in conductive scenarios, where otherwise a rigorous electromagnetic modeling would be required. Second, a three-dimensional inversion of airborne tensor very-low-frequency data with a rigorous forward modeling at its core is developed. For dealing with the large scale of the forward problem, a nested fast-Fourier-transform-based integral equation method is introduced, wherein electromagnetic interactions are arranged according to their range and larger ranges are treated with less accuracy and effort. The inversion improves the traditional interpretation through data derived maps by providing a conductivity model, thus constraining the upper few hundred meters of the crust down to the shallowest conductor and allowing the study of its top in three dimensions. The third inversion problem is the the joint inversion of refraction and geoelectric data. By requiring the velocity and resistivity models to share a common, laterally variable layered geometry, easily interpretable models, which are reasonable in many geological near surface situations (e.g., groundwater exploration in Quaternary sediments), are produced directly from the joint inversion. Finally, a joint inversion of large scale potential field data from a gabbro intrusion is presented. Gravity and magnetic data are required to abide to a petrophysical constraint, which is derived from extensive field sampling. The impact of the constraint is maximized under the provision that both data sets are explained equally well as they would be through individual inversions. This leads to a simple and clearly defined intrusion geometry, consistent for both the density and magnetic susceptibility distribution. In all presented inversion problems, field data sets are successfully inverted, the results are appraised through synthetic tests and, if available, through comparison with independent data.

Abstract [de]

Diese Arbeit hat die Lösung von vier geophysikalischen Umkehraufgaben, sogenannten Inversionsproblemen, zum Gegenstand. Zwei dieser Aufgaben befassen sich mit der Inversion elektromagnetischer Daten, zwei weitere sind Probleme der kombinierten Inversion von Datensätzen aus unterschiedlichen geophysikalischen Messverfahren. Im ersten Problem wird die für die Auswertung elektromagnetischer Zweispulensystemdaten typische lineare Näherung der kleinen Induktionszahlen als Bornsche Näherung verallgemeinert, ihre Anwendbarkeit durch exakte Berücksichtigung der Induktionsvorgänge in einem beliebigen homogenen Halbraum von schlechtleitenden auf gutleitende Untergründe ausgedehnt und schließlich zur zwei- und dreidimensionalen Inversion eingesetzt. Dadurch kann auch im leitfähigen Untergrund eine aufwändige exakte Modellierung vermieden werden. Im zweiten Problem wird eine dreidimensionale Inversion von flugzeuggestützten Längstwellenmessungen entwickelt und als ihre Grundlage eine exakte elektromagnetische Rechnung erdacht. Damit wird traditionelle kartengestützte Dateninterpretation durch ein dreidimensionales Leitfähigkeitsmodell ergänzt, welches die oberen hundert bis dreihundert Meter der Erdkruste bis hin zur Tiefe des obersten Leiters abbildet, so dass dessen Oberflächenform erkundet werden kann. Die enorme Problemgröße wird durch eine Fouriertransformationsmethode bewältigt, welche die elektromagnetischen Wechselwirkungen nach ihrer Reichweite einteilt, die Fernwirkungen mit entsprechend verringerter Genauigkeit behandelt und dadurch eine erhebliche Anzahl an Rechnungen einspart. Im dritten Problem werden refraktionsseismische und geoelektrische Messungen kombiniert, indem sowohl das Geschwindigkeits- als auch das Widerstandsmodell mit einer gemeinsamen, lateral veränderlichen und durch beide Datensätze bestimmten Schichtstruktur versehen werden. Ein solches, durch Schichten definiertes Inversionsergebnis, stellt in vielen oberflächennahen Anwendungen, beispielsweise im Grundwasserbereich, ein sinnvolles Abbild der Erde dar. Im vierten Problem werden Schweremessungen und Magnetfeldmessungen, die über einer Gabbrointrusion aufgenommen wurden, mittels einer empirischen petrophysikalischen Beziehung vereinigt, welche aus Labormessungen an einer großen Anzahl von Gesteinsproben abgeleitet wurde. Hierbei wird der Einfluss dieser Modellkopplung solange maximiert, wie beide Datensätze mit derjenigen Genauigkeit angepasst werden können, welche vorher in Einzelinversionen erreicht wurde. Das Ergebnis ist ein einfaches, geometrisch konsistentes Modell der Verteilungen von Dichte und magnetischer Suszeptibilität. In allen vier Aufgaben wurden erfolgreich reale Felddaten invertiert. Die Güte der Ergebnisse wurde mittels synthetischer Experimente untersucht und, so vorhanden, mit unabhängigen Informationen verglichen.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 108 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1116
Keyword
Inversion, Electromagnetic methods, Joint inversion, Potential Field methods, Inversion, Elektromagnetische Verfahren, Joint-Inversion, Potentialverfahren
National Category
Geophysics
Research subject
Geophysics with specialization in Solid Earth Physics
Identifiers
urn:nbn:se:uu:diva-215673 (URN)978-91-554-8856-7 (ISBN)
Public defence
2014-02-28, Hambergsalen, Geocentrum, Villavägen 16, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2014-02-06 Created: 2014-01-15 Last updated: 2014-02-10

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kamm, JochenPedersen, Laust Börsting

Search in DiVA

By author/editor
Kamm, JochenPedersen, Laust Börsting
By organisation
Geophysics
In the same journal
Geophysical Journal International
Geophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 427 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf