uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods
Royal Ontario Museum.
2012 (English)In: BMC Biology, ISSN 1741-7007, Vol. 10, 60- p.Article in journal (Refereed) Published
Abstract [en]


Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights.


Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa.


The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.

Place, publisher, year, edition, pages
BioMed Central, 2012. Vol. 10, 60- p.
National Category
Evolutionary Biology Ecology Zoology
Research subject
Biology with specialization in Evolutionary Organismal Biology
URN: urn:nbn:se:uu:diva-217208DOI: 10.1186/1741-7007-10-60OAI: oai:DiVA.org:uu-217208DiVA: diva2:692520
Available from: 2014-01-31 Created: 2014-01-31 Last updated: 2014-01-31Bibliographically approved

Open Access in DiVA

fulltext(701 kB)38 downloads
File information
File name FULLTEXT01.pdfFile size 701 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full texthttp://www.biomedcentral.com/1741-7007/10/60

Search in DiVA

By author/editor
Campione, Nicolas E.
In the same journal
BMC Biology
Evolutionary BiologyEcologyZoology

Search outside of DiVA

GoogleGoogle Scholar
Total: 38 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 224 hits
ReferencesLink to record
Permanent link

Direct link