uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lithium transport investigation in LixFeSiO4: A promising cathode material
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2013 (English)In: Solid State Communications, ISSN 0038-1098, E-ISSN 1879-2766, Vol. 173, 9-13 p.Article in journal (Refereed) Published
Abstract [en]

In this paper we investigate lithium mobility in both Li2FeSiO4 and its   half-lithiated state LiFeSiO4 considering an orthorhombic crystal   structure. We find that the calculated activation energy of Li+ ions   hopping between adjacent equilibrium sites predicts two least hindered   diffusion pathways in both materials. One of them is along the [100]   direction characterizing an ionic diffusion in a straight line and the   other follows a zig-zag way between the Fe-Si-O layers. We also show   that diffusion of Li+ ions in the half-lithiated structure follows the   same behavior as in the lithiated structure. As a whole, the activation   energies for the investigated compounds present a greater value compared   with the activation energies in currently used materials such as   LiFePO4. The results were calculated in the framework of density   functional theory in conjunction with the climbing image nudged elastic   band method. The Hubbard term was added to the Kohn-Sham Hamiltonian to   overcome the delocalization problem of d electrons. Furthermore, the   diffusion coefficients were calculated for both structures considering   temperatures ranging from 300 to 700 K. (C) 2013 Elsevier Ltd. All   rights reserved.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 173, 9-13 p.
National Category
Condensed Matter Physics
Research subject
Materials Science
Identifiers
URN: urn:nbn:se:uu:diva-220056DOI: 10.1016/j.ssc.2013.08.025ISI: 000330919200003OAI: oai:DiVA.org:uu-220056DiVA: diva2:703951
Available from: 2014-03-10 Created: 2014-03-10 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Energy Storage Materials: Insights From ab Initio Theory: Diffusion, Structure, Thermodynamics and Design.
Open this publication in new window or tab >>Energy Storage Materials: Insights From ab Initio Theory: Diffusion, Structure, Thermodynamics and Design.
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development of science and technology have provided a lifestyle completely dependent on energy consumption. Devices such as computers and mobile phones are good examples of how our daily life depends on electric energy. In this scenario, energy storage technologies emerge with strategic importance providing efficient ways to transport and commercialize the produced energy. Rechargeable batteries come as the most suitable alternative to fulfill the market demand due to their higher energy- and power- density when compared with other electrochemical energy storage systems. In this context, during the production of this thesis, promising compounds for advanced batteries application were investigated from the theoretical viewpoint. The framework of the density functional theory has been employed together with others theoretical tools to study properties such as ionic diffusion, redox potential, electronic structure and crystal structure prediction.

Different organic materials were theoretically characterized with quite distinct objectives. For instance, a protocol able to predict the redox potential in solution of long oligomers were developed and tested against experimental measurements. Strategies such as anchoring of small active molecules on polymers backbone have also been investigated through a screening process that determined the most promising candidates. Methods such as evolutionary simulation and basin-hopping algorithm were employed to search for global minimum crystal structures of small molecules and inorganic compounds working as a cathode of advanced sodium batteries. The crystal structure evolution of C6Cl4O2 upon Na insertion was unveiled and the main reasons behind the lower specific capacity obtained in the experiment were clarified. Ab initio molecular dynamics and the nudged elastic band method were employed to understand the underlying ionic diffusion mechanisms in the recently proposed Alluaudite and Eldfellite cathode materials. Moreover, it was demonstrated that electronic conduction in Na2O2, a byproduct of the Na-O2 battery, occurs via hole polarons hopping. Important physical and chemical insights were obtained during the production of this thesis. It finally supports the development of low production cost, environmental friendliness and efficient electrode compounds for advanced secondary batteries. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 83 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1584
Keyword
Density Functional Theory, Defects Diffusion, Thermodynamics and Batteries.
National Category
Natural Sciences
Identifiers
urn:nbn:se:uu:diva-331399 (URN)978-91-513-0122-8 (ISBN)
Public defence
2017-12-07, Polhemsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2017-11-15 Created: 2017-10-19 Last updated: 2017-11-15

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Araujo, Rafael B.Scheicher, Ralph H.Ahuja, Rajeev

Search in DiVA

By author/editor
Araujo, Rafael B.Scheicher, Ralph H.Ahuja, Rajeev
By organisation
Materials Theory
In the same journal
Solid State Communications
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 477 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf