uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of CD44 variant expression in head and neck squamous cell carcinomas
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Otolaryngology and Head and Neck Surgery. (Head & Neck Tumor Targeting)
2014 (English)In: Tumor Biology, ISSN 1010-4283, E-ISSN 1423-0380, Vol. 35, no 3, 2053-2062 p.Article in journal (Refereed) Published
Abstract [en]

CD44 is a complex family of molecules, associated with aggressive malignancies and cancer stem cells. However, the role of CD44 variants in tumor progression and treatment resistance is not clear. In this study, the expression of CD44 and its variants was assessed in head and neck squamous cell carcinomas (HNSCC). Furthermore, subpopulations of cells expressing high amounts of CD44 variants were identified and characterized, for e.g., cell cycle phase and radioresistance. Results revealed high and homogenous CD44 and CD44v7 expression in four cell lines and CD44v4 and CD44v6 in three cell lines. CD44v3 was highly expressed in two cell lines, whereas CD44v5, CD44v7/8, CD44v10, CD133, and CD24 demonstrated no or moderate expression. Moreover, a subpopulation of very high CD44v4 expression was identified, which is independent of cell phase, demonstrating increased proliferation and radioresistance. In cell starvation experiments designed to enrich for cancer stem cells, a large population with dramatically increased expression of CD44, CD44v3, CD44v6, and CD44v7 was formed. Expression was independent of cell phase, and cells demonstrated increased radioresistance and migration rate. Our results demonstrate that the heterogeneity of tumor cells has important clinical implications for the treatment of HNSCC and that some of the CD44 variants may be associated with increased radioresistance. Highly expressed CD44 variants could make interesting candidates for selective cancer targeting.

Place, publisher, year, edition, pages
2014. Vol. 35, no 3, 2053-2062 p.
National Category
Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-221093DOI: 10.1007/s13277-013-1272-3ISI: 000333536300041PubMedID: 24122205OAI: oai:DiVA.org:uu-221093DiVA: diva2:707649
Available from: 2014-03-25 Created: 2014-03-25 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Towards Personalized Cancer Therapy: New Diagnostic Biomarkers and Radiosensitization Strategies
Open this publication in new window or tab >>Towards Personalized Cancer Therapy: New Diagnostic Biomarkers and Radiosensitization Strategies
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on the evaluation of biomarkers for radio-immunodiagnostics and radio-immunotherapy and on radiosensitization strategies after HSP90 inhibition, as a step towards more personalized cancer medicine. There is a need to develop new tracers that target cancer-specific biomarkers to improve diagnostic imaging, as well as to combine treatment strategies to potentiate synergistic effects. Special focus has been on the cell surface molecule CD44 and its oncogenic variants, which were found to exhibit unique expression patterns in head and neck squamous cell carcinoma (HNSCC). The variant CD44v6 seems to be a promising target, because it is overexpressed in this cancer type and is associated with radioresistance. Two new radioconjugates that target CD44v6, namely, the Fab fragment AbD15179 and the bivalent fragment AbD19384, were investigated with regard to specificity, biodistribution and imaging performance. Both conjugates were able to efficiently target CD44v6-positive tumors in vitro and in vivo. PET imaging of CD44v6 with 124I-AbD19384 revealed many advantages compared with the clinical standard 18F-FDG. Furthermore, the efficacy of the novel HSP90 inhibitor AT13387 and its potential use in combination with radiation treatment were evaluated. AT13387 proved to be a potent new cancer drug with favorable pharmacokinetics. Synergistic combination effects at clinically relevant drug and radiation doses are promising for both radiation dose reduction and minimization of side effects, or for an improved therapeutic response. The AT13387 investigation indicated that CD44v6 is not dependent on the molecular chaperone HSP90, and therefore, radio-immunotargeting of CD44v6 in combination with the HSP90 inhibitor AT13387 might potentiate treatment outcomes. However, EGFR expression levels did correlate with HSP90 inhibition, and therefore, molecular imaging of EGFR-positive tumors may be used to assess the treatment response to HSP90 inhibitors.

In conclusion, these results demonstrate how tumor targeting with radiolabeled vectors and chemotherapeutic compounds can provide more specific and sensitive diagnostic tools and treatment options, which can lead to customized treatment decisions and a functional diagnosis that provides more precise and safer drug prescribing, as well as a more effective treatment for each patient.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 62 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1085
Keyword
tumor targeting, radionuclide targeting, HSP90 inhibition, AT13387, radiosensitization, molecular imaging, combination treatment, EGFR, CD44v6
National Category
Cancer and Oncology Radiology, Nuclear Medicine and Medical Imaging Cell and Molecular Biology
Research subject
Biomedical Radiation Science
Identifiers
urn:nbn:se:uu:diva-247539 (URN)978-91-554-9207-6 (ISBN)
Public defence
2015-05-13, Fåhraeussalen, Rudbecklaboratoriet, Dag Hammarskjölds väg 20, 751 85 Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2015-04-21 Created: 2015-03-20 Last updated: 2015-07-07

Open Access in DiVA

fulltext(1393 kB)394 downloads
File information
File name FULLTEXT01.pdfFile size 1393 kBChecksum SHA-512
fb1d604c9150a4d4307c93da1aa26f9df1979a4773c1e9aa0231aafbe4e4404453d942a2af8ea1c35deb5642ec5507d4c58db14d56331d97485fe8bf714a6417
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records BETA

Spiegelberg, DianaSelvaraju, RamNestor, Marika

Search in DiVA

By author/editor
Spiegelberg, DianaSelvaraju, RamNestor, Marika
By organisation
Biomedical Radiation SciencesOtolaryngology and Head and Neck Surgery
In the same journal
Tumor Biology
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 394 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1002 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf