uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interfacial Elevtron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensiitized TiO2 Nanocrystalline Solar Cells
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Physical Chemistry.
2002 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 106, 12693-12704 p.Article in journal (Refereed) Published
Abstract [en]

The anchoring of the ruthenium dye {(C4H9)4N}[Ru(Htcterpy)(NCS)3] (with tcterpy = 4,4‘,4‘‘-tricarboxy-2,2‘:6‘,2‘‘-terpyridine), the so-called black dye, onto nanocrystalline TiO2 films has been characterized by UV−vis and FT-IR spectroscopies. FT-IR spectroscopy data suggest that dye molecules are bound to the surface by a bidentate binuclear coordination mode. The interfacial electron-transfer (ET) dynamics has been investigated by femtosecond pump−probe transient absorption spectroscopy and nanosecond laser flash photolysis. The electron-injection process from the dye excited state into the TiO2 conduction band is biexponential with a fast component (200 ± 50 fs) and a slow component (20 ps). These two components can be attributed to the electron injection from the initially formed and the relaxed dye excited states, respectively. Nanosecond kinetic data suggest the existence of two distinguishable regimes (I and II) for the rates of reactions between injected electrons and oxidized dye molecules or oxidized redox species (D+ or I2•-). The frontier between these two regimes is defined by the number of injected electrons per particle (Ne), which was determined to be about 1. The present kinetic study was undertaken within regime I (Ne > 1). Under these conditions, the back-electron-transfer kinetics is comparable to that in systems with other ruthenium complexes adsorbed onto TiO2. The reduction of oxidized dye molecules by iodide results in the formation of I2•- on a very fast time scale (<20 ns). Within regime I, the decay of I2•- occurs in 100 ns via reaction with injected electrons (I2•- + e- → 2I-). In regime II (Ne ≤ 1), which corresponds to the normal operating conditions of dye-sensitized solar cells, the decay of I2•- is very slow and likely occurs via the dismutation reaction (2I2•-→ I- + I3-). Our results predict that, under high light intensity (Ne > 1), the quantum efficiency losses in dye-sensitized solar cells will be important because of the dramatic acceleration of the reaction between I2•- and injected electrons. Mechanisms for the ET reactions involving injected electrons are proposed. The relevance of the present kinetic studies for dye-sensitized nanocrystalline solar cells is discussed.

Place, publisher, year, edition, pages
American Chemical Society , 2002. Vol. 106, 12693-12704 p.
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-42962DOI: 10.1021/jp0200268OAI: oai:DiVA.org:uu-42962DiVA: diva2:70866
Available from: 2008-10-17 Created: 2008-10-17 Last updated: 2017-12-05

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Boschloo, GerritHagfeldt, Anders

Search in DiVA

By author/editor
Boschloo, GerritHagfeldt, Anders
By organisation
Department of Physical Chemistry
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 812 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf