uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of van der Waals corrected and sparse-matter density functionals for the metal-free phthalocyanine/gold interface
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Show others and affiliations
2014 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, no 4, 045416- p.Article in journal (Refereed) Published
Abstract [en]

In this paper, we report a systematic study on the effect of different van der Waals dispersion correction methods in conjunction with Density Functional Theory on the adsorption characteristics of a monolayer of metal-free phthalocyanine on Au(111). The chosen dispersion corrections were DFT-D2, the Tkatchenko-Scheffler method with and without self-consistent screening, and four sparse-matter density functionals. A comparison among different dispersion corrections was performed and the results are related to available experimental scanning tunnel microscopy and x-ray standing-wave measurements for similar molecules on Au(111). We found that the Tkatchenko-Scheffler method as well as a sparse-matter density functional which employs the exchange potential of optB86b and the nonlocal correlation of Dion describe the adsorbed system, e. g., electronic and geometric structure with an adsorption distance of 3.3 angstrom, reasonably well within moderate computational costs.

Place, publisher, year, edition, pages
2014. Vol. 89, no 4, 045416- p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-221933DOI: 10.1103/PhysRevB.89.045416ISI: 000332225400008OAI: oai:DiVA.org:uu-221933DiVA: diva2:710451
Available from: 2014-04-07 Created: 2014-04-07 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Complex Excitations in Advanced Functional Materials
Open this publication in new window or tab >>Complex Excitations in Advanced Functional Materials
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Understanding the fundamental electronic properties of materials is a key step to develop innovations in many fields of technology. For example, this has allowed to design molecular based devices like organic field effect transistors, organic solar cells and molecular switches.

In this thesis, the properties of advanced functional materials, in particular metal-organic molecules and molecular building blocks of 2D materials, are investigated by means of Density Functional Theory (DFT), the GW approximation (GWA) and the Bethe-Salpeter equation (BSE), also in conjunction with experimental studies. The main focus is on calculations aiming to understand spectroscopic results.

In detail, the molecular architectures of lutetium-bis-phthalocyanine (LuPc2) on clean and hydrogenated vicinal Si(100)2×1, and of the biphenylene molecule on Cu(111) were analysed by means of X-ray Photoelectron spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy; DFT calculations were performed to obtain insights into the atomic and electronic structures. Furthermore, detailed information about the electronic states of the gas phase iron phthalocyanine (FePc) and of the gas phase biphenylene molecule were obtained through XPS and NEXAFS spectroscopy. I have studied by means of DFT, multiplet and GWA calculations the electronic correlation effects in these systems. Also the optical, electronic and excitonic properties of a hypothetical 2D material based on the biphenylene molecule were investigated by GWA and BSE calculations. Monolayers of metal-free phthalocyanine (H2Pc) on Au(111) and of FePc on Au(111) and Cu(100)c(2×2)-2N/Cu(111) with and without pyridine modifier were studied by XPS and final state calculations. A multiplet approach to compute L-edges employing the hybridizations function, known from dynamical mean field theory, was proposed and applied to transition metal oxides.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 90 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1365
Keyword
X-ray Absorption Spectroscopy, Photoelectron Spectroscopy, Adsorption, Phthalocyanines, Biphenylene, Excitons, Functional Materials
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-282151 (URN)978-91-554-9543-5 (ISBN)
Public defence
2016-05-13, Å80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2016-04-22 Created: 2016-04-03 Last updated: 2016-04-29

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Luder, JohannSanyal, BiplabEriksson, OllePuglia, CarlaBrena, Barbara

Search in DiVA

By author/editor
Luder, JohannSanyal, BiplabEriksson, OllePuglia, CarlaBrena, Barbara
By organisation
Materials TheoryMolecular and condensed matter physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 584 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf