uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Planetary perturbations for Oort cloud comets: II. Implications for the origin of observable comets
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Theoretical Astrophysics.
2014 (English)In: Icarus (New York, N.Y. 1962), ISSN 0019-1035, E-ISSN 1090-2643, Vol. 231, 110-121 p.Article in journal (Refereed) Published
Abstract [en]

We present Monte Carlo simulations of the dynamical history of the Oort cloud, where in addition to the main external perturbers (Galactic tides and stellar encounters) we include, as done in a companion paper (Fouchard, M., Rickman, H., Froeschle, Ch., Valsecchi, G.B. [2013b] Icarus, in press), the planetary perturbations experienced each time the comets penetrate to within 50 AU of the Sun. Each simulation involves an initial sample of four million comets and extends over a maximum of 5 Gyr. For better understanding of the outcomes, we supplement the full dynamical model by others, where one or more of the effects are left out. We concentrate on the production of observable comets, reaching for the first time a perihelion within 5 AU of the Sun. We distinguish between four categories, depending on whether the comet jumps across, or creeps through, the Jupiter-Saturn barrier (perihelion distances between 5 and 15 AU), and whether the orbit leading to the observable perihelion is preceded by a major planetary perturbation or not. For reasons explained in the paper, we call the strongly perturbed comets "Kaib-Quinn comets". We thus derive a synthetic picture of the Oort spike, from which we draw two main conclusions regarding the full dynamical model. One is that 2/3 of the observable comets are injected with the aid of a planetary perturbation at the previous perihelion passage, and about half of the observable comets are of the Kaib-Quinn type. The other is that the creepers dominate over the jumpers. Due to this fact, the spike peaks at only 31000 AU, and the majority of new comets have semi-major axes less than this value. The creepers show a clear preference for retrograde orbits as a consequence of the need to avoid untimely, planetary ejection before becoming observable. Thus, the new comets should have a 60/40 preference for retrograde against prograde orbits in apparent conflict with observations. However, both these and other results depend on our model assumptions regarding the initial structure of the Oort cloud, which is isotropic in shape and has a relatively steep energy distribution. We also find that they depend on the details of the past history of external perturbations including GMC encounters, and we provide special discussions of those issues.

Place, publisher, year, edition, pages
2014. Vol. 231, 110-121 p.
Keyword [en]
Comets, dynamics, Comets, origin, Celestial mechanics
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-222395DOI: 10.1016/j.icarus.2013.11.032ISI: 000331668100010OAI: oai:DiVA.org:uu-222395DiVA: diva2:712086
Available from: 2014-04-14 Created: 2014-04-10 Last updated: 2014-04-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rickman, Hans
By organisation
Theoretical Astrophysics
In the same journal
Icarus (New York, N.Y. 1962)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 492 hits
ReferencesLink to record
Permanent link

Direct link