uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oxygen-tuned magnetic coupling of Fe-phthalocyanine molecules to ferromagnetic Co films
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2013 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 88, no 22, 224424- p.Article in journal (Refereed) Published
Abstract [en]

The coupling of submonolayer coverages of Fe-phthalocyanine molecules on bare and oxygen-covered ferromagnetic Co(001) films was studied by x-ray-absorption spectroscopy, especially the x-ray magnetic circular dichroism, in combination with density functional theory. We observe that the magnetic moments of the paramagnetic molecules are aligned even at room temperature, resulting from a magnetic coupling to the substrate. While the magnetization of the Fe ions directly adsorbed on the Co surface is parallel to the magnetization of the Co film, the introduction of an oxygen interlayer leads to an antiparallel alignment. As confirmed by theory, the coupling strength is larger for the system FePc/Co than for FePc/O/Co, causing a stronger temperature dependence of the Fe magnetization for the latter system. Furthermore, the calculations reveal that the coupling mechanism changes due to the O layer from mostly direct exchange to Co of the bare surface to a 180 degrees antiferromagnetic superexchange via the O atoms. Finally, by comparing the experimental x-ray-absorption spectra at the N K edge with the corresponding calculations, the contribution of the individual orbitals has been determined and the two inequivalent N atoms of the molecules could be distinguished.

Place, publisher, year, edition, pages
2013. Vol. 88, no 22, 224424- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-222954DOI: 10.1103/PhysRevB.88.224424ISI: 000332162300007OAI: oai:DiVA.org:uu-222954DiVA: diva2:712538
Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Brena, BarbaraHerper, HeikeBhandary, SumantaSanyal, BiplabEriksson, Olle

Search in DiVA

By author/editor
Brena, BarbaraHerper, HeikeBhandary, SumantaSanyal, BiplabEriksson, Olle
By organisation
Materials Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 379 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf