uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Poisson wave trace formula for perturbed Dirac operators
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics.
Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England..
2017 (English)In: Journal of operator theory, ISSN 0379-4024, E-ISSN 1841-7744, Vol. 77, no 1, 133-147 p.Article in journal (Refereed) Published
Abstract [en]

We consider self-adjoint Dirac operators D = D-0 + V(x), where D 0 is the free three-dimensional Dirac operator and V(x) is a smooth compactly supported Hermitian matrix. We define resonances of D as poles of the meromorphic continuation of its cut-off resolvent. An upper bound on the number of resonances in disks, an estimate on the scattering determinant and the Lifshits-Krein trace formula then leads to a global Poisson wave trace formula for resonances of D.

Place, publisher, year, edition, pages
2017. Vol. 77, no 1, 133-147 p.
Keyword [en]
Dirac operator, resonances, Poisson wave trace
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:uu:diva-223460DOI: 10.7900/jot.2016mar04.2119ISI: 000396724500008OAI: oai:DiVA.org:uu-223460DiVA: diva2:713100
Available from: 2014-04-20 Created: 2014-04-20 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kungsman, Jimmy

Search in DiVA

By author/editor
Kungsman, Jimmy
By organisation
Department of Mathematics
In the same journal
Journal of operator theory
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 398 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf