uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Fluid-rock interactions associated with regional tectonics and basin evolution
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
Show others and affiliations
2014 (English)In: Sedimentology, ISSN 0037-0746, E-ISSN 1365-3091, Vol. 61, no 3, 660-690 p.Article, review/survey (Refereed) Published
Abstract [en]

An integrated approach consisting of fracture analysis, petrography, carbon, oxygen and strontium-isotope analyses, as well as fluid-inclusion micro-thermometry, led to a better understanding of the evolution of fluid-rock interactions and diagenesis of the Upper Permian to Upper Triassic carbonates of the United Arab Emirates. The deposited carbonates were first marked by extensive early dolomitization. During progressive burial, the carbonates were affected by dolomite recrystallization as well as precipitation of vug and fracture-filling dolomite, quartz and calcite cements. After considerable burial during the Middle Cretaceous, sub-vertical north-south oriented fractures (F1) were cemented by dolomite derived from mesosaline to hypersaline fluids. Upon the Late Cretaceous maximum burial and ophiolite obduction, sub-vertical east-west fractures (F2) were cemented by dolomite (Dc2) and saddle dolomite (Ds) derived from hot, highly saline fluids. Then, minor quartz cement has precipitated in fractures from hydrothermal brines. Fluid-inclusion analyses of the various diagenetic phases imply the involvement of increasingly hot (200 degrees C) saline brines (20 to 23% NaCl eq.). Through one-dimensional burial history numerical modelling, the maximum temperatures reached by the studied rocks are estimated to be in the range of 160 to 200 degrees C. Tectonically-driven flux of hot fluids and associated diagenetic products are interpreted to have initiated during the Late Cretaceous maximum burial and lasted until the Oligocene-Miocene compressional tectonics and related uplift. The circulation of such hydrothermal brines led to partial dissolution of dolomites (Dc2 and Ds) and to precipitation of hydrothermal calcite C1 in new (mainly oriented north-south; F3) and pre-existing, reactivated fractures. The integration of the obtained data confirms that the diagenetic evolution was controlled primarily by the interplay of the burial thermal evolution of the basin and the regional tectonic history. Hence, this contribution highlights the impacts of regional tectonics and basin history on diagenetic processes, which may subsequently affect reservoir properties.

Place, publisher, year, edition, pages
2014. Vol. 61, no 3, 660-690 p.
Keyword [en]
dolomitization, United Arab Emirates, Carbonates, Permo-Triassic, fluid evolution, diagenesis
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-223435DOI: 10.1111/sed.12073ISI: 000332777300003OAI: oai:DiVA.org:uu-223435DiVA: diva2:713108
Available from: 2014-04-21 Created: 2014-04-18 Last updated: 2014-04-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Morad, Sadoon
By organisation
Solid Earth Geology
In the same journal
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 261 hits
ReferencesLink to record
Permanent link

Direct link