uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
EphA4-Mediated Ipsilateral Corticospinal Tract Misprojections Are Necessary for Bilateral Voluntary Movements But Not Bilateral Stereotypic Locomotion
Show others and affiliations
2014 (English)In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 34, no 15, 5211-5221 p.Article in journal (Refereed) Published
Abstract [en]

In this study, we took advantage of the reported role of EphA4 in determining the contralateral spinal projection of the corticospinal tract (CST) to investigate the effects of ipsilateral misprojections on voluntary movements and stereotypic locomotion. Null EphA4 mutations produce robust ipsilateral CST misprojections, resulting in bilateral corticospinal tracts. We hypothesize that a unilateral voluntary limb movement, not a stereotypic locomotor movement, will become a bilateral movement in EphA4 knock-out mice with a bilateral CST. However, in EphA4 full knock-outs, spinal interneurons also develop bilateral misprojections. Aberrant bilateral spinal circuits could thus transform unilateral corticospinal control signals into bilateral movements. We therefore studied mice with conditional forebrain deletion of the EphA4 gene under control by Emx1, a gene expressed in the forebrain that affects the developing CST but spares brainstem motor pathways and spinal motor circuits. We examined two conditional knock-outs targeting forebrain EphA4 during performance of stereotypic locomotion and voluntary movement: adaptive locomotion over obstacles and exploratory reaching. We found that the conditional knock-outs used alternate stepping, not hopping, during overground locomotion, suggesting normal central pattern generator function and supporting our hypothesis of minimal CST involvement in the moment-to-moment control of stereotypic locomotion. In contrast, the conditional knock-outs showed bilateral voluntary movements under conditions when single limb movements are normally produced and, as a basis for this aberrant control, developed a bilateral motor map in motor cortex that is driven by the aberrant ipsilateral CST misprojections. Therefore, a specific change in CST connectivity is associated with and explains a change in voluntary movement.

Place, publisher, year, edition, pages
2014. Vol. 34, no 15, 5211-5221 p.
Keyword [en]
corticospinal tract, EphA4, locomotion, motor cortex, reaching
National Category
Medical and Health Sciences
URN: urn:nbn:se:uu:diva-224731DOI: 10.1523/JNEUROSCI.4848-13.2014ISI: 000334347700015OAI: oai:DiVA.org:uu-224731DiVA: diva2:719066
Available from: 2014-05-22 Created: 2014-05-19 Last updated: 2014-05-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kullander, Klas
By organisation
Developmental GeneticsScience for Life Laboratory, SciLifeLab
In the same journal
Journal of Neuroscience
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 294 hits
ReferencesLink to record
Permanent link

Direct link