uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Dynamic parameter estimation of atomic layer deposition kinetics applied to in situ quartz crystal microbalance diagnostics
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Show others and affiliations
2014 (English)In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 111, 15-33 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents the elaboration of an experimentally validated model of a continuous cross flow atomic layer deposition (ALD) reactor with temporally separated precursor pulsing encoded in the Moclelica language. For the experimental validation of the model, in situ quartz crystal microbalance (QCM) diagnostics was used to yield submonolayer resolution of mass deposition resulting from thin film growth of ZnO from Zn(C-2)(2) and H2O precursors. The ZnO ALD reaction intrinsic kinetic mechanism that was developed accounted for the temporal evolution of the equilibrium fractional surface concentrations of precursor adducts and their transition states for each half reaction, This mechanism was incorporated into a rigorous model of reactor transport, which comprises isothermal compressible equations for the conservation of mass, momentum and gas-phase species. The physically based model in this way relates the local partial pressures of precursors to the dynamic composition of the growth surface, and ultimately governs the accumulated mass trajectory at the QCM sensor. Quantitative rate information can then be extracted by means of dynamic parameter estimation. The continuous operation of the reactor is described by limit-cycle dynamic solutions and numerically computed using Radau collocation schemes and solved using CasADi's interface to [PORT. Model predictions of the transient mass gain per unit area of exposed surface QCM sensor, resolved at a single pulse sequence, were in good agreement with experimental data under a wide range of operating conditions. An important property of the limit-cycle solution procedure is that it enables the systematic approach to analyze the dynamic nature of the growth surface composition as a function of process operating parameters. Especially, the dependency of the film growth rate per limit-cycle on the half-cycle precursor exposure close and the process temperature was thoroughly assessed and the difference between ALD in saturating and in non-saturating film growth conditions distinguished. (c) 2014 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
2014. Vol. 111, 15-33 p.
Keyword [en]
Atomic layer deposition, Mathematical modeling, In situ film characterization, Experimental model validation, Parameter identification, Optimization
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Electronics
URN: urn:nbn:se:uu:diva-224981DOI: 10.1016/j.ces.2014.02.005ISI: 000334527100002OAI: oai:DiVA.org:uu-224981DiVA: diva2:719839
Available from: 2014-05-27 Created: 2014-05-26 Last updated: 2014-07-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Törndahl, TobiasZimmermann, Uwe
By organisation
Solid State Electronics
In the same journal
Chemical Engineering Science
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 457 hits
ReferencesLink to record
Permanent link

Direct link