uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Variability Assessment and Forecasting of Renewables: A Review for Solar, Wind, Wave and Tidal Resources
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Show others and affiliations
2015 (English)In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 44, 356-375 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2015. Vol. 44, 356-375 p.
National Category
Energy Engineering Engineering and Technology
Research subject
Engineering Science with specialization in Science of Electricity; Engineering Science with specialization in Solid State Physics
Identifiers
URN: urn:nbn:se:uu:diva-225870DOI: 10.1016/j.rser.2014.12.019ISI: 000351324300025OAI: oai:DiVA.org:uu-225870DiVA: diva2:722552
Available from: 2014-06-09 Created: 2014-06-09 Last updated: 2017-12-05
In thesis
1. Wind Power and Natural Disasters
Open this publication in new window or tab >>Wind Power and Natural Disasters
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Wind power can be related to natural disasters in several ways. This licentiate thesis gives some background and introduces four papers devoted to two aspects of this relation. The first section looks into how small-scale wind energy converters (WECs) could be used to generate power after a natural disaster. For this application diesel generators are the most common solution today, but there would be several advantages of replacing these systems. A study of off-grid systems with battery storage at 32 sites showed that photovoltaics (PV) were more suitable than WECs. The results were confirmed by a study for the entire globe; PV outperformed WECs at most sites when it comes to small-scale application. This is especially true for areas with a high disaster risk. Hybrid systems comprising both PV and WECs are however interesting at higher latitudes. For the Swedish case, it is shown that gridded data from a freely available meteorological model, combined with a statistical model, give good estimates of the mean wind speed at 10 meters above ground. This methodology of estimating the mean wind speed can be used when there is no time for a proper wind measurement campaign.

The second section is directed towards wind power variability and integration. The results presented in the thesis are intended as a basis for future studies on how a substantially increased wind power capacity affects the electric grid in terms of stability, grid reinforcement requirements, increased balancing needs etc. A review of variability and forecastability for non-dispatchable renewable energy sources was performed together with researchers from the solar, wave and tidal power fields. Although a lot of research is conducted in these areas, it was concluded that more studies on combinations of the sources would be desirable. The disciplines could also learn from each other and benefit from the use of more unified methods and metrics. A model of aggregated hourly wind power production has finally been developed. The model is based on reanalysis data from a meteorological model and detailed information on Swedish WECs. The model proved very successful, both in terms of low prediction errors and in the match of probability density function for power and step changes of power. 

Abstract [sv]

Vindkraft kan relateras till naturkatastrofer på flera olika sätt. Den här licentiat\-avhandlingen ger bakgrund till och introducerar fyra artiklar som beskriver två aspekter av detta samband. I den första avdelningen undersöks hur småskalig vindkraft skulle kunna användas för att generera el efter en naturkatastrof. I dagsläget är det dieselaggregat som används för detta ändamål, men det skulle finnas stora fördelar med att övergå till förnybara system. En studie av 32 platser (myndigheten MSB:s utlandsstationeringar augusti 2012) visade att solceller var mer lämpade än vindkraftverk. Resultaten bekräftades av en studie för hela världen; solceller ger billigare system än småskaliga vindkraftverk för de flesta platser, inte minst om man tittar på områden som är utsatta för naturkatastrofer. Hybridsystem med både solceller och vindkraftverk var dock intressanta på högre breddgrader. För Sverige så visas det att data från en fritt tillgängliga meteorologisk modell tillsammans med en statistisk korrigering beroende på terrängtyp ger bra uppskattningar av medelvinden på 10 meters höjd. Den föreslagna metodiken kan vara användbar som ett komplement till vindmätningar eller om det inte finns tid eller möjlighet till en riktig mätkampanj.

Den andra avdelningen är inriktad mot vindens variabilitet och integrering av vindkraft i kraftsystemet. De resultat som presenteras i denna avhandling är tänkta som en bas för framtida studier av hur en kraftigt ökad andel vindkraft påverkar elsystemet med avseende på stabilitet, nödvändiga nätförstärkningar, ökade krav på balanskraft etc. En översiktsstudie av variabilitet och prognosbarhet för intermittenta förnybara energikällor gjordes tillsammans med forskare inom sol-, våg och tidvattenkraft. Även om mycket forskning pågår inom dessa områden så var en slutsats att mer studier för kombinationer av olika källor skulle vara önskvärt. Forskare inom de olika disciplinerna skulle också kunna lära från varandra och dra fördel av gemensamma metoder och mått. Slutligen har en modell av aggregerad timvis vindkraftproduktion tagits fram. Modellen baseras på data från en meteorologisk modell samt detaljerad information om vindkraftverk i Sverige. Modellen visade sig vara mycket träffsäker, både vad gäller låga prediktionsfel och i överensstämmelse av sannolikhetsfördelning av effekt och stegförändring av timvis effekt.

Place, publisher, year, edition, pages
Uppsala: Uppsala universitet, 2014. 44 p.
Series
UURIE / Uppsala University, Department of Engineering Sciences, ISSN 0349-8352 ; 337-14L
Keyword
Wind power, Natural disasters, Hybrid energy system, Meteorological model, Statistical model, Variability, Wind power integration
National Category
Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-225573 (URN)
Presentation
(English)
Opponent
Supervisors
Available from: 2014-06-09 Created: 2014-06-04 Last updated: 2014-06-09Bibliographically approved
2. Marine Current Resource Assessment: Measurements and Characterization
Open this publication in new window or tab >>Marine Current Resource Assessment: Measurements and Characterization
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The increasing interest in converting energy from renewable resources into electricity has led to an increase in research covering the field of marine current energy, mainly concerning tidal currents and in-stream tidal turbines. Tides have the advantage of being predictable decades ahead. However, the tidal resource is intermittent and experiences local variations that affect the power output from a conversion system. The variability is mainly due to four aspects: the tidal regime, the tidal cycle, bathymetry at the site and weather effects. Each potential site is unique, the velocity flow field at tidal sites is highly influenced by local bathymetry and turbulence. Hence, characterizing the resource requires careful investigations and providing high quality velocity data from measurement surveys is of great importance. In this thesis, measurements of flow velocities have been performed at three kinds of sites.

A tidal site has been investigated for its resource potential in one of all of the numerous fjords in Norway. Measurements have been performed to map the spatial and temporal variability of the resource. Results show that currents in the order of 2 m/s are present in the center of the channel. Furthermore, the flow is highly bi-directional between ebb and flood flows. The site thus have potential for in-stream energy conversion. A model is proposed that predicts peak current speed from information on tidal range at the site. A corresponding model can be set up and implemented at other similar sites affected by tides, i.e. fjord inlets connecting the ocean to a fjord or a basin.

A river site serves as an experimental site for a marine current energy converter that has been designed at Uppsala University and deployed in Dalälven, Söderfors. The flow rate at the site is regulated by an upstream hydrokinetic power plant nearby, making the site suitable for experiments on the performance of the vertical axis turbine in its natural environment. The turbine has been run in uniform flow and measurements have been performed to characterize the extent of the wake.

An ocean current site was a target of investigation for its potential for providing utilizable renewable energy. A measurement campaign was conducted, mapping the flow both spatially and temporally. However, the site was shown to not be suitable for energy conversion using present technique.

Abstract [sv]

Det ökande intresset för att producera elektricitet från förnybara energikällor har lett till en satsning på forskning inom området marin strömkraft, främst när det gäller tidvattenströmmar och tidvattenturbiner för fritt strömmande vatten. Tidvatten har fördelen att vara förutsägbar årtionden i förväg. Dock så är tidvattenresursen periodisk och varierar lokalt vilket påverkar effektuttaget från ett kraftverk. Variationerna beror till största delen på fyra aspekter: antal hög- och lågvatten per dag, tidvattencykeln, djupförhållanden på platsen (batymetri) och vädereffekter. Varje potentiell plats är unik, vattnets hastighetsfält påverkas i hög grad av lokal batymetri och turbulens. Därför krävs noggranna undersökningar för att karakterisera resursen. Att tillhandahålla hastighetsdata av hög kvalitet från mätningar är därför av stor betydelse. I denna avhandling har mätningar av flödeshastigheter utförts på tre typer av platser.

En plats med tidvattenströmmar, belägen i en av alla fjordar längs Norges kust, har undersökts för sin resurspotential. Mätningar har utförts för att kartlägga resursens variation i både tid och rum. Resultaten visar att strömmar i storleksordningen 2 m/s återfinns i mitten av kanalen. Dessutom uppvisar flödet liten variation från huvudriktningen för både inkommande (flod) och utgående (ebb) flöden. Platsen har således potential för energiomvandling av fritt strömmande vatten. En modell föreslås som förutsäger strömmarnas maxhastighet från information om höjdskillnaden mellan ebb och flod och vice versa. En motsvarande modell kan ställas upp och användas på andra platser med liknande förhållanden som berörs av tidvatten, dvs. fjordinlopp som förbinder havet med en fjord eller en bassäng.

En älv fungerar som en plats för experiment för ett marint strömkraftverk som har utvecklats vid Uppsala universitet och sjösatts i Dalälven, Söderfors. Flödeshastigheten på platsen regleras uppströms av ett närliggande vattenkraftverk, vilket gör platsen bra för att utföra experiment på prestandan av den vertikalaxlade turbinen i dess naturliga miljö. Turbinen har körts i jämnt flöde och mätningar har utförts för att karaktärisera vakens utbredning.

En plats med havsströmmar var mål för en utredning av dess potential för att ge användbar förnybar energi. En mätningskampanj genomfördes för att kartlägga flödets variation både rumsligt och tidsmässigt. Emellertid visade sig platsen inte vara lämplig för energiomvandling utifrån användning av nuvarande teknik.

Place, publisher, year, edition, pages
Uppsala: Institutionen för teknikvetenskaper, 2015. 39 p.
Series
UURIE / Uppsala University, Department of Engineering Sciences, ISSN 0349-8352 ; 342-15L
Keyword
ADCP
National Category
Oceanography, Hydrology, Water Resources Ocean and River Engineering Marine Engineering Engineering and Technology
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-266670 (URN)
Presentation
2015-12-15, Polhemsalen, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
Swedish Research CouncilCarl Tryggers foundation ÅForsk (Ångpanneföreningen's Foundation for Research and Development)Swedish Energy AgencyVattenfall AB
Available from: 2015-12-02 Created: 2015-11-10 Last updated: 2015-12-10Bibliographically approved
3. Solar Variability Assessment and Grid Integration: Methodology Development and Case Studies
Open this publication in new window or tab >>Solar Variability Assessment and Grid Integration: Methodology Development and Case Studies
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

During the 21st century there has been a tremendous increase in grid-connected photovoltaic (PV) capacity globally, due to falling prices and introduction of economic incentives. PV systems are in most cases small-scale, installed on residential dwellings, which means that the power production is widely distributed and close to the end-user of electricity. In this licentiate thesis the distributed PV in the built environment is studied. A methodology for assessing short-term (sub-minute) solar variability was developed, which in the continuation of this PhD project could be used to study the aggregated impact on the local distribution grid from dispersed PV systems. In order to identify potential locations for PV systems in a future scenario, methodology was developed to assess the rooftop topography on both local level using LiDAR data and nationally through building statistics. Impacts on the distribution grid were investigated through a case study on a rural municipality in Sweden. It was found that the hosting capacity, i.e. the amount of PV power generation that can be integrated in the grid without exceeding certain power quality measures, is high, at least 30%. However, the hosting capacity on transmission level needs further investigation. As a first step a methodology was developed in order to model scenarios for hourly solar power generation, aggregated over wide areas, here applied to the whole Swedish power system. The model showed high correlation compared to PV power production reported to the Swedish transmission system operator (TSO). Furthermore, it was used to model scenarios of high PV penetration in Sweden, which give some indications on the impact on the power system, in terms of higher frequency of extreme ramps.

Place, publisher, year, edition, pages
Uppsala: Uppsala University, Department of Engineering Sciences, 2015. 55 p.
Keyword
Solar variability, Photovoltaics, Grid integration, GIS, Distributed generation
National Category
Energy Systems
Research subject
Engineering Science
Identifiers
urn:nbn:se:uu:diva-265451 (URN)
Presentation
2015-11-25, ITC 1111, Lägerhyddsvägen 1, Uppsala, 14:00 (English)
Opponent
Supervisors
Funder
StandUp
Available from: 2016-01-12 Created: 2015-10-29 Last updated: 2016-01-12Bibliographically approved
4. Underwater Electrical Connections and Remotely Operated Vehicles
Open this publication in new window or tab >>Underwater Electrical Connections and Remotely Operated Vehicles
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Remotely Operated Vehicles (ROVs) are underwater robots that perform different kind of operations, from observation to heavier tasks like drilling, carrying and pulling cables, etc. Those ROVs are costly and require skilled personal to operate it as well as equipment for transportation and deployment (boats, cranes, etc.).

The division for electricity at Uppsala University, is developing a wave energy converter (WEC) concept. The concept is based on a point-absorbing buoy with a directly driven linear generator placed on the seabed. Several units are connected to a marine substation that is located on the seabed, whose role is to collect and smooth the power absorbed from the waves and then bring it to the shore through one single cable.

Cable connection is a big challenge in the project because the WEC concept is small and many units are necessary to create a rentable farm. Nowadays this operation is performed by divers but using Observation Class ROV (OCROV) could be an interesting alternative since they are affordable at lower costs and easier to operate. Cable connection is however a heavy task and requires force that an OCROV does not have. It will need a docking system from which the vehicle will take its force. It would then go to the station, dock itself to this support plate, grab the cables and connect them together. This procedure cannot be done by the ROV operator because it requires accurate displacement and quick adjustment of the robot’s behavior.

An autopilot was created in Matlab Simulink that consists of three units: the path following, the ROV, and the positioning unit. The first one uses the vehicle’s position and computes the speed and heading to be applied on the ROV in order to guide it on the desired path. The second one contains a controller that will adapt the thrust of each propeller to the force needed to reach the desired heading and speed from the path following unit. It also contains the model of the ROV that computes its position and speed. The last unit consists of a Kalman filter that estimates the ROV position and will be used in case of delay or failure in the communication with the positioning sensors.

The autopilot model is used with a positioning system that utilizes green lasers and image processing. Two green lasers are used as fixed points in each camera picture and from their distance on the image, the actual distance between the ROV and the docking platform can be computed. In addition, optical odometry is used. The idea behind is to estimate how the ROV is behaving by evaluating the changes between two pictures of the camera. Those two systems, laser and odometry, work together in order to get more accurate results.

The laser system has so far been tested in air. The distance measurements gave interesting results with an error inferior to 3%, and angle measurements gave less than 10% error for a distance of one meter. One advantage with the system is that it gets more accurate as the vehicle gets closer to the docking point.

In addition to the ROV project, a review study was conducted on the variability of wave energy compared with other resources such as tidal, solar, and wind power. An analysis of the different tools and models that are used to forecast the power generation of those sources was done. There is a need for collaboration between the different areas because the future will aggregate those different sources to the grid and requires a unification of the models and methods.

Place, publisher, year, edition, pages
Uppsala: Department of Engineering Sciences, 2016. 66 p.
Series
UURIE / Uppsala University, Department of Engineering Sciences, ISSN 0349-8352 ; 349-16L
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:uu:diva-302644 (URN)
Presentation
2016-09-30, 16:08 (English)
Opponent
Supervisors
Projects
Lysekil project
Available from: 2016-10-18 Created: 2016-09-07 Last updated: 2016-10-18Bibliographically approved
5. Modelling Wind Power for Grid Integration Studies
Open this publication in new window or tab >>Modelling Wind Power for Grid Integration Studies
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

When wind power and other intermittent renewable energy (IRE) sources begin to supply a significant part of the load, concerns are often raised about the inherent intermittency and unpredictability of these sources. In order to study the impact from higher IRE penetration levels on the power system, integration studies are regularly performed. The model package presented and evaluated in Papers I–IV provides a comprehensive methodology for simulating realistic time series of wind generation and forecasts for such studies. The most important conclusion from these papers is that models based on coarse meteorological datasets give very accurate results, especially in combination with statistical post-processing. Advantages with our approach include a physical coupling to the weather and wind farm characteristics, over 30 year long, 5-minute resolution time series, freely and globally available input data and computational times in the order of minutes. In this thesis, I make the argument that our approach is generally preferable to using purely statistical models or linear scaling of historical measurements.

In the variability studies in Papers V–VII, several IRE sources were considered. An important conclusion is that these sources and the load have very different variability characteristics in different frequency bands. Depending on the magnitudes and correlations of these fluctuation, different time scales will become more or less challenging to balance. With a suitable mix of renewables, there will be little or no increase in the needs for balancing on the seasonal and diurnal timescales, even for a fully renewable Nordic power system. Fluctuations with periods between a few days and a few months are dominant for wind power and net load fluctuations of this type will increase strongly for high penetrations of IRE, no matter how the sources are combined. According to our studies, higher capacity factors, more offshore wind power and overproduction/curtailment would be beneficial for the power system.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 114 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1428
Keyword
Wind power, Wind power modelling, Intermittent renewables, Variability, Integration or renewables, Reanalysis data, Power system studies
National Category
Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-302837 (URN)978-91-554-9690-6 (ISBN)
Public defence
2016-11-04, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2016-10-07 Created: 2016-09-11 Last updated: 2016-10-25
6. Resource characterization and variability studies for marine current power
Open this publication in new window or tab >>Resource characterization and variability studies for marine current power
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Producing electricity from marine renewable resources is a research area that develops continuously. The field of tidal energy is on the edge to progress from the prototype stage to the commercial stage. However, tidal resource characterization, and the effect of tidal turbines on the flow, is still an ongoing research area in which this thesis aims to contribute.

In this thesis, measurements of flow velocities have been performed at three kinds of sites. Firstly, a tidal site has been investigated for its resource potential in a fjord in Norway. Measurements have been performed with an acoustic Doppler current profiler to map the spatial and temporal characteristics of the flow. Results show that currents are in the order of 2 m/s in the center of the channel. Furthermore, the flow is highly bi-directional between ebb and flood flows. The site thus has potential for in-stream energy conversion. Secondly, a river site serves as an experimental site for a marine current energy converter that has been designed at Uppsala University and deployed in Dalälven, Söderfors. The flow rate at the site is regulated by an upstream hydro power plant, making the site suitable for experiments on the performance of the vertical axis turbine in a natural environment. The turbine was run in steady discharge flows and measurements were performed to characterize the extent of the wake. Lastly, at an ocean current site, the effect that transiting ferries may have on submerged devices was investigated. Measurements were conducted with two sonar systems to obtain an underwater view of the wake caused by a propeller and a water jet thruster respectively.

Furthermore, the variability of the intermittent renewable sources wind, solar, wave and tidal energy was investigated for the Nordic countries. All of the sources have distinctly different variability features, which is advantageous when combining power generated from them and introducing it on the electricity grid. Tidal variability is mainly due to four aspects: the tidal regime, the tidal cycle, local bathymetry causing turbulence, asymmetries etc. and weather effects. Models of power output from the four sources was set up and combined in different energy mixes for a “highly renewable” and a “fully renewable” scenario. By separating the resulting power time series into different frequency bands (long-, mid-, mid/short-, and short-term components) it was possible to minimize the variability on different time scales. It was concluded that a wise combination of intermittent renewable sources may lower the variability on short and long time scales, but increase the variability on mid and mid/short time scales.

The tidal power variability in Norway was then investigated separately. The predictability of tidal currents has great advantages when planning electricity availability from tidal farms. However, the continuously varying tide from maximum power output to minimum output several times per day increases the demand for backup power or storage. The phase shift between tidal sites introduces a smoothing effect on hourly basis but the tidal cycle, with spring and neap tide simultaneously in large areas, will inevitably affect the power availability.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 64 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1499
Keyword
Marine current energy, tidal currents, wake, variability, renewable energy, ADCP, flow measurement
National Category
Ocean and River Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-319033 (URN)978-91-554-9881-8 (ISBN)
Public defence
2017-05-31, Häggsalen, Ångströmlaboratoriet, Uppsala, 09:15 (English)
Opponent
Supervisors
Funder
StandUpSwedish Energy AgencyÅForsk (Ångpanneföreningen's Foundation for Research and Development)Carl Tryggers foundation
Available from: 2017-05-05 Created: 2017-04-04 Last updated: 2017-05-08
7. Solar Variability Assessment in the Built Environment: Model Development and Application to Grid Integration
Open this publication in new window or tab >>Solar Variability Assessment in the Built Environment: Model Development and Application to Grid Integration
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Variationer i Solelgenerering i den Byggda Miljön : Modellutveckling och Integration i Elnätet
Abstract [en]

During the 21st century there has been a rapid increase in grid-connected photovoltaic (PV) capacity globally, due to falling system component prices and introduction of various economic incentives. To a large extent, PV systems are installed on buildings, which means they are widely distributed and located close to the power consumer, in contrast to conventional power plants. The intermittency of solar irradiance poses challenges to the integration of PV, which may be mitigated if properly assessing the solar resource. In this thesis, methods have been developed for solar variability and resource assessment in the built environment on both national and local level, and have been applied to grid integration studies. On national level, a method based on building statistics was developed that reproduces the hourly PV power generation in Sweden with high accuracy; correlation between simulated and real power generation for 2012 and 2013 were 0.97 and 0.99, respectively. The model was applied in scenarios of high penetration of intermittent renewable energy (IRE) in the Nordic synchronous power system, in combination with similar models for wind, wave and tidal power. A mix of the IRE resources was sought to minimise the variability in net load (i.e., load minus IRE, nuclear and thermal power). The study showed that a fully renewable Nordic power system is possible if hydropower operation is properly planned for. However, the contribution from PV power would only be 2-3% of the total power demand, due to strong diurnal and seasonal variability. On local level, a model-driven solar resource assessment method was developed based on low-resolution LiDAR (Light Detection and Ranging) data. It was shown to improve the representation of buildings, i.e., roof shape, tilt and azimuth, over raster-based methods, i.e., digital surface models (DSM), which use the same LiDAR data. Furthermore, the new method can provide time-resolved data in contrast to traditional solar maps, and can thus be used as a powerful tool when studying the integration of high penetrations of PV in the distribution grid. In conclusion, the developed methods fill important gaps in our ability to plan for a fully renewable power system.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 92 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1598
Keyword
Solar Variability, Photovoltaics, Grid Integration, Distributed Generation, LiDAR, GIS
National Category
Energy Systems
Research subject
Engineering Science
Identifiers
urn:nbn:se:uu:diva-332714 (URN)978-91-513-0149-5 (ISBN)
Public defence
2017-12-21, Häggsalen, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2017-11-29 Created: 2017-11-01 Last updated: 2017-11-29

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Widén, JoakimCarpman, NicoleCastellucci, ValeriaLingfors, DavidOlauson, JonRemouit, FloreBergkvist, MikaelGrabbe, MårtenWaters, Rafael

Search in DiVA

By author/editor
Widén, JoakimCarpman, NicoleCastellucci, ValeriaLingfors, DavidOlauson, JonRemouit, FloreBergkvist, MikaelGrabbe, MårtenWaters, Rafael
By organisation
Solid State PhysicsElectricity
In the same journal
Renewable & sustainable energy reviews
Energy EngineeringEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2083 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf