uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ab Initio Atomistic Thermodynamics of Water Reacting with Uranium Dioxide Surfaces
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2014 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 118, no 16, 8491-8500 p.Article in journal (Refereed) Published
Abstract [en]

Using first-principles simulations, we study the temperature- and pressure-dependent adsorption reaction of water on the flat (111) and (211) and (221) stepped surfaces of uranium dioxide. Our calculations are based on the density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) for describing the chemical interaction of water with UO2, in combination with ab initio molecular dynamics simulations to capture the temperature dependence of the reaction. We compute the pressure-temperature phase diagrams and establish the thermodynamic boundaries which govern the feasibility of water adsorption at these surfaces. Effects of water coverage on the surface adsorption reaction have been taken into account. We find that the dissociative adsorption reaction of water on stepped surfaces can be analyzed as two separated reactions, the dissociative water adsorption on the step edge and the water adsorption on the terrace. The most stable water adsorption upon modification of the water partial pressure and temperature is adsorption on the (211) step edge, followed by adsorption on the (221) step edge and being the least favorable for the (111) surface. We conclude that these UO2 surfaces will always react with water at room temperature and atmospheric pressure, leading to water dissociation and a modification of the step morphology.

Place, publisher, year, edition, pages
2014. Vol. 118, no 16, 8491-8500 p.
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-225524DOI: 10.1021/jp501715mISI: 000335114200028OAI: oai:DiVA.org:uu-225524DiVA: diva2:727950
Available from: 2014-06-23 Created: 2014-06-04 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Maldonado, PabloOppeneer, Peter M.

Search in DiVA

By author/editor
Maldonado, PabloOppeneer, Peter M.
By organisation
Materials Theory
In the same journal
The Journal of Physical Chemistry C
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 389 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf