uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Orientation effects in morphology and electronic properties of anatase TiO2 one-dimensional nanostructures. I. Nanowires
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2014 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 20, 9479-9489 p.Article in journal (Refereed) Published
Abstract [en]

By means of ab initio calculations we have revealed the existence of sizable anisotropy in electronic properties of anatase TiO2 nanowires with respect to orientation: nanowires with 001 , 100 and 110 axes are found to be direct band-gap, indirect band-gap and degenerate semiconductor materials, respectively. The degenerate semiconducting properties of 110 oriented TiO2 nanowires are predicted to be the intrinsic features closely connected with stoichiometry. A band-gap variation with nanowire diameter is also shown to display rather complex behavior characterized by a competition between quantum confinement and surface state effects that is fully compatible with the available contradictory experimental data. Finally, we propose a model to explain the band-gap variation with size in TiO2 nanowires, nanocrystals and thin films.

Place, publisher, year, edition, pages
2014. Vol. 16, no 20, 9479-9489 p.
National Category
Chemical Sciences Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-227587DOI: 10.1039/c3cp54988gISI: 000335818600031OAI: oai:DiVA.org:uu-227587DiVA: diva2:730409
Available from: 2014-06-27 Created: 2014-06-27 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Skorodumova, Natalia V.

Search in DiVA

By author/editor
Skorodumova, Natalia V.
By organisation
Materials Theory
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Chemical SciencesPhysical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 395 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf