uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Escherichia coli CysZ is a pH dependent sulfate transporter that can be inhibited by sulfite
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Structure and Molecular Biology.
Show others and affiliations
2014 (English)In: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1838, no 7, 1809-1816 p.Article in journal (Refereed) Published
Abstract [en]

The Escherichia coli inner membrane protein CysZ mediates the sulfate uptake subsequently utilized for the synthesis of sulfur-containing compounds in cells. Here we report the purification and functional characterization of CysZ. Using Isothermal Titration Calorimetry, we have observed interactions between CysZ and its putative substrate sulfate. Additional sulfur-containing compounds from the cysteine synthesis pathway have also been analyzed for their abilities to interact with CysZ. Our results suggest that CysZ is dedicated to a specific pathway that assimilates sulfate for the synthesis of cysteine. Sulfate uptake via CysZ into E. coil whole cells and proteoliposome offers direct evidence of CysZ being able to mediate sulfate uptake. In addition, the cysteine synthesis pathway intermediate sulfite can interact directly with CysZ with higher affinity than sulfate. The sulfate transport activity is inhibited in the presence of sulfite, suggesting the existence of a feedback inhibition mechanism in which sulfite regulates sulfate uptake by CysZ. Sulfate uptake assays performed at different extracellular pH and in the presence of a proton uncoupler indicate that this uptake is driven by the proton gradient. (C) 2014 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
2014. Vol. 1838, no 7, 1809-1816 p.
Keyword [en]
CysZ, Sulfate, Transport, Membrane protein, Inhibition
National Category
Biochemistry and Molecular Biology Biophysics
Identifiers
URN: urn:nbn:se:uu:diva-227987DOI: 10.1016/j.bbamem.2014.03.003ISI: 000336695300014OAI: oai:DiVA.org:uu-227987DiVA: diva2:732475
Available from: 2014-07-04 Created: 2014-07-02 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Zhang, LiJiang, WangshuAlmqvist, Jonas

Search in DiVA

By author/editor
Zhang, LiJiang, WangshuAlmqvist, Jonas
By organisation
Structure and Molecular BiologyDepartment of Cell and Molecular Biology
In the same journal
Biochimica et Biophysica Acta - Biomembranes
Biochemistry and Molecular BiologyBiophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 362 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf