uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
1992 (English)In: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 161, no 1-2, 87-98 p.Article in journal (Refereed) Published
Abstract [en]

The "in-crystal" frequency of the anharmonic and uncoupled OH stretching vibration of HDO molecules in LiClO4.3H2O(s) has been calculated by quantum-mechanical ab initio and model potential methods and compared with the experimental infrared frequency from isotope-isolated HDO molecules. The effects of the nearest neighbours as well as of the crystalline environment have been investigated by the two computational techniques. In both cases, the one-dimensional potential for an anharmonic OH oscillator was constructed from point-wise energy calculations and the Schrodinger equation for the protonic motion in this potential well was solved by a variational procedure. In the ab initio calculations, vibrational potentials were constructed from RHF and MP2 type calculations of point-charge embedded ClO4-.HDO and (Li+)2.(ClO4-)2.HDO clusters using DZP and TZP basis sets. For the LiClO4.3H2O(s) crystal, the ab initio OH frequency is in close quantitative agreement with experiment when electron correlation by MP2 and the crystal field are included: 3537 cm-1 (MP2(TZP)) versus the experimental value of 3556 cm-1. Inclusion of the crystal field is essential and can in this crystal be satisfactorily represented by Ewald field-consistent point charges outside the hydrogen-bonded ClO4-...HDO cluster. In the model potential calculations, analytical intermolecular pair potential functions from the literature were used in conjunction with an experimental intramolecular potential function for the OH stretching motion. The particular intermolecular model chosen here yields an absolute OH frequency 160 cm-1 below experiment. These calculations exemplify some of the difficulties encountered when employing analytical model potentials in vibrational studies.

Place, publisher, year, edition, pages
1992. Vol. 161, no 1-2, 87-98 p.
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-228780DOI: 10.1016/0301-0104(92)80179-YISI: A1992HL69800009OAI: oai:DiVA.org:uu-228780DiVA: diva2:734865
Available from: 2014-07-21 Created: 2014-07-21 Last updated: 2014-07-21

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
By organisation
Department of Chemistry
In the same journal
Chemical Physics
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 409 hits
ReferencesLink to record
Permanent link

Direct link