uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry.
1993 (English)In: J PHYS CHEM-US, ISSN 0022-3654, Vol. 97, no 44, 11402-11407 p.Article in journal (Refereed) Published
Abstract [en]

The optimized geometry, harmonic vibrational frequencies, and infrared absorption intensities of the lithium trifluoromethanesulfonate (triflate) ion pair, CF3SO3-Li have been investigated using the ab initio self-consistent Hartree-Fock and correlated second-order Moller-Plesset perturbation theory with the 6-31G* and lower basis sets. In the optimized structure the lithium cation is bound to two of the oxygens of the SO3 group forming a bidentate complex with C(s) symmetry. A local minimum with a monodentate structure was obtained in the HF/3-21G* calculations. The energy difference between the mono- and bidentate structures of the complex is predicted to be nearly 39 kJ mol-1 in this basis. A splitting of 230 and 158 cm-1 is obtained for the antisymmetric SO3 stretching for the bi- and monodentate coordination of the lithium cation with the free anion, respectively. The infrared spectrum of lithium triflate in poly(propylene oxide) shows a splitting of 43 cm-1. The strong interaction of the metal cation with the anion in the 1:1 complex thus overemphasizes the ''splitting behavior'' observed for lithium triflate dissolved in polymers. In the bidentate (MP2/6-31G*) complex the symmetric SO3 stretching shows a downshift of 38 cm-1, in contrast to an upshift of 47 cm-1 for the monodentate complex. The different signs of these frequency shifts have a purely geometric origin. The dependence of this frequency shift on the position of the Li+ ion is discussed.

Place, publisher, year, edition, pages
1993. Vol. 97, no 44, 11402-11407 p.
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-228792DOI: 10.1021/j100146a011ISI: A1993MF52300011OAI: oai:DiVA.org:uu-228792DiVA: diva2:734883
Available from: 2014-07-21 Created: 2014-07-21 Last updated: 2014-07-21

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
By organisation
Department of Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 404 hits
ReferencesLink to record
Permanent link

Direct link