uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Microscopic description of the evolution of the local structure and an evaluation of the chemical pressure concept in a solid solution
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2014 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, no 22, 224105- p.Article in journal (Refereed) Published
Abstract [en]

Extended x-ray absorption fine-structure studies have been performed at the Zn K and Cd K edges for a series of solid solutions of wurtzite Zn1-xCdxS samples with x = 0.0, 0.1, 0.25, 0.5, 0.75, and 1.0, where the lattice parameter as a function of x evolves according to the well-known Vegard's law. In conjunction with extensive, large-scale first-principles electronic structure calculations with full geometry optimizations, these results establish that the percentage variation in the nearest-neighbor bond distances are lower by nearly an order of magnitude compared to what would be expected on the basis of lattice parameter variation, seriously undermining the chemical pressure concept. With experimental results that allow us to probe up to the third coordination shell distances, we provide a direct description of how the local structure, apparently inconsistent with the global structure, evolves very rapidly with interatomic distances to become consistent with it. We show that the basic features of this structural evolution with the composition can be visualized with nearly invariant Zn-S-4 and Cd-S-4 tetrahedral units retaining their structural integrity, while the tilts between these tetrahedral building blocks change with composition to conform to the changing lattice parameters according to the Vegard's law within a relatively short length scale. These results underline the limits of applicability of the chemical pressure concept that has been a favored tool of experimentalists to control physical properties of a large variety of condensed matter systems.

Place, publisher, year, edition, pages
2014. Vol. 89, no 22, 224105- p.
National Category
Physical Sciences
URN: urn:nbn:se:uu:diva-229446DOI: 10.1103/PhysRevB.89.224105ISI: 000338282500002OAI: oai:DiVA.org:uu-229446DiVA: diva2:736684
Available from: 2014-08-08 Created: 2014-08-07 Last updated: 2015-07-07Bibliographically approved
In thesis
1. Theory and Modelling of Functional Materials
Open this publication in new window or tab >>Theory and Modelling of Functional Materials
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The diverse field of material research has been steadily expanding with a great help from computational physics, especially in the investigation of the fundamental properties of materials. This has driven the computational physics to become one of the main branches of physics, allowing for density functional theory (DFT) to develop as one of the cornerstones of material research. Nowdays, DFT is the method of choice in a great variety of studies, from fundamental properties, to materials modelling and searching for new materials. In this thesis, DFT is employed for the study of a small part of this vast pool of applications. Specifically, the microscopic characteristics of Zn1-xCdxS alloys are studied by looking into the evolution of the local structure. In addition, the way to model the growth of graphene on Fe(110) surface is discussed. The structural stability of silicon nanocrystals with various shapes is analysed in detail, as well.

DFT is further used in studying different properties of semiconductor nanocrystals. The size evolution of the character of the band gap in silicon nanocrystals is investigated in terms of changes in the character of the states around the band gap. The influence of various surface impurities on the band gap, as well as on the electronic and optical properties of silicon nanocrystals is further studied. In addition, the future use of silicon nanocrystals in photovoltaic devices is examined by studying the band alignment and the charge densities of silicon nanocrystals embedded in a silicon carbide matrix. Furthermore, the electronic and optical properties of different semiconductor nanocrystals is also investigated. In the case of the CdSe/CdS and CdS/ZnS core-shell nanocrystals the influence of the nanocrystal size and different structural models on their properties is analysed. For silicon nanocrystal capped with organic ligands, the changes in the optical properties and lifetimes is thoroughly examined with changes in the type of organic ligand.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 93 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1247
nanocrystals, graphene, alloys, density functional theory, optical properties, electronic properties, core-shell structures, semiconductors
National Category
Condensed Matter Physics
urn:nbn:se:uu:diva-248513 (URN)978-91-554-9231-1 (ISBN)
Public defence
2015-05-27, Å10132 (Häggsalen), Ångström Laboratory, Lägerhydddsvägen 1, Uppsala, 13:30 (English)
Available from: 2015-05-05 Created: 2015-03-30 Last updated: 2015-07-07

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kocevski, VanchoRusz, JanEriksson, OlleSarma, Dipankar Das
By organisation
Materials Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 191 hits
ReferencesLink to record
Permanent link

Direct link