uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Selective targeting within the subthalamic nucleus alters responsiveness to sugar and regulates accumbal dopamine levels
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics. (Functional Neurobiology)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics. (Functional Neurobiology)
Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada..
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Developmental Genetics. (Functional Neurobiology)
(English)Manuscript (preprint) (Other academic)
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-229851OAI: oai:DiVA.org:uu-229851DiVA: diva2:738137
Available from: 2014-08-15 Created: 2014-08-15 Last updated: 2015-01-22
In thesis
1. Motion and Emotion: Functional In Vivo Analyses of the Mouse Basal Ganglia
Open this publication in new window or tab >>Motion and Emotion: Functional In Vivo Analyses of the Mouse Basal Ganglia
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A major challenge in the field of neuroscience is to link behavior with specific neuronal circuitries and cellular events. One way of facing this challenge is to identify unique cellular markers and thus have the ability to, through various mouse genetics tools, mimic, manipulate and control various aspects of neuronal activity to decipher their correlation to behavior. The Vesicular Glutamate Transporter 2 (VGLUT2) packages glutamate into presynaptic vesicles for axonal terminal release. In this thesis, VGLUT2 was used to specifically target cell populations within the basal ganglia of mice with the purpose of investigating its connectivity, function and involvement in behavior. The motor and limbic loops of the basal ganglia are important for processing of voluntary movement and emotions. During such physiological events, dopamine plays a central role in modulating the activity of these systems.

The brain reward system is mainly formed by dopamine projections from the ventral tegmental area (VTA) to the ventral striatum. Certain dopamine neurons within the VTA exhibit the ability to co-release dopamine and glutamate. In paper I, glutamate and dopamine co-release was targeted and our results demonstrate that the absence of VGLUT2 in dopamine neurons leads to perturbations of reward consumption and reward-associated memory, probably due to reduced DA release observed in the striatum as detected by in vivo chronoamperometry.

In papers II and IV, VGLUT2 in a specific subpopulation within the subthalamic nucleus (STN) was identified and targeted. Based on the described role of the STN in movement control, we hypothesized that the mice would be hyperlocomotive. As shown in paper II, this was indeed the case. In paper IV, a putative reward-related phenotype was approached and we could show reduced operant-self administration of sugar and altered dopamine release levels suggesting a role for the STN in reward processes.

In paper III, we investigated and identified age- and sex-dimorphisms in dopamine kinetics in the dorsal striatum of one of the most commonly used mouse lines worldwide, the C57/Bl6J. Our results point to the importance of taking these dimorphisms into account when utilizing the C57/Bl6J strain as model for neurological and neuropsychiatric disorders.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 78 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1019
Keyword
Dopamine, Basal Ganglia, Reward System, In Vivo Chronoamperometry, Optogenetics, Deep Brain Stimulation, Parkinson’s Disease, Addiction, Glutamate, Vesicular Glutamate Transporter, VGLUT2, Sex, Age, Subthalamic Nucleus, Striatum, Nucleus Accumbens, Ventral Tegmental Area
National Category
Neurosciences
Identifiers
urn:nbn:se:uu:diva-229910 (URN)978-91-554-9006-5 (ISBN)
Public defence
2014-10-03, B42, BMC, Husargatan, 3, 751 24 Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2014-09-10 Created: 2014-08-16 Last updated: 2015-01-22

Open Access in DiVA

No full text

By organisation
Developmental Genetics
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 384 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf