uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Molecular Imaging in an Animal Model of Early Acute Respiratory Distress Syndrome: Rethinking the Lung-Protective Mechanical Ventilation Strategy
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
(English)Manuscript (preprint) (Other academic)
National Category
Medical and Health Sciences
URN: urn:nbn:se:uu:diva-230046OAI: oai:DiVA.org:uu-230046DiVA: diva2:738768
Available from: 2014-08-19 Created: 2014-08-19 Last updated: 2015-01-22Bibliographically approved
In thesis
1. Regional Lung Kinetics of Ventilator-Induced Lung Injury and Protective-Ventilation Strategies Studied by Dynamic Positron Emission Tomography
Open this publication in new window or tab >>Regional Lung Kinetics of Ventilator-Induced Lung Injury and Protective-Ventilation Strategies Studied by Dynamic Positron Emission Tomography
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mechanical ventilation in itself can harm the lung and cause ventilator-induced lung injury (VILI), which can induce or aggravate acute respiratory distress syndrome (ARDS). Much debate remains over pivotal concepts regarding the pathophysiology of VILI, especially about the precise contribution, kinetics, and primary role of potential VILI mechanisms. Consequently, it remains largely unknown how best to design a well-timed and full-bodied mechanical ventilation strategy. Little is known also about small airways dysfunction in ARDS. Dynamic positron emission tomography (PET) with [18F]fluoro-2-deoxy-D-glucose (18F-FDG) can be used to image cellular metabolism, which during lung inflammation mainly reflects neutrophil activity, allowing the study of regional lung inflammation in vivo. We studied the regional evolution of inflammation using dynamic PET/CT imaging of 18F-FDG in VILI and during different lung-protective mechanical ventilation strategies. By dynamic CT we investigated also the location and magnitude of peripheral airway closure and alveolar collapse under high and low distending pressures and high and low inspiratory oxygen fraction. Piglets were submitted to an experimental model of early ARDS combining repeated lung lavages and injurious mechanical ventilation. The animals were subsequently studied during sustained VILI, or submitted to distinct approaches of lung-protective mechanical ventilation: the one recommended by the ARDS Network (ARDSNet), or to one defined as open lung approach (OLA). The normally and poorly aerated regions - corresponding to intermediate gravitational zones - were the primary targets of the inflammatory process accompanying early VILI, which may be attributed to the small volume of the aerated lung that receives most of ventilation. The ARDSNet strategy did not attenuate global pulmonary inflammation during 27h and led to a concentration of inflammatory activity in the upper and poorly aerated lung regions. The OLA, in comparison with the ARDSNet approach, resulted in sustained and better gas exchange and lung mechanics. Moreover, the OLA strategy resulted in less global and regional inflammation. Dynamic CT data suggested that a significant amount of airway closure and related reabsorption atelectasis occurs in acute lung injury. Whether potential distal bronchioles injury (“bronchiolotrauma”) is a critical and decisive element in ventilator-associated lung injury is a matter for future studies.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 68 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1018
[18F]fluoro-2-deoxy-D-glucose; positron emission tomography; acute pulmonary inflammation; acute respiratory distress syndrome; mechanical ventilation; ventilator-induced lung injury
National Category
Medical and Health Sciences
urn:nbn:se:uu:diva-230022 (URN)978-91-554-9003-4 (ISBN)
Public defence
2014-10-03, Enghoffsalen, Akademiska sjukhuset, Uppsala, 09:00 (English)
Available from: 2014-09-12 Created: 2014-08-19 Last updated: 2015-01-22

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Borges, João Batista
By organisation
Department of Surgical Sciences
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 171 hits
ReferencesLink to record
Permanent link

Direct link