uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Horizontal transfer of a heme A synthase gene from bactera to jakobid mitochondrial DNA
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Organismal Biology, Systematic Biology.
(English)Manuscript (preprint) (Other academic)
National Category
Evolutionary Biology Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-231857OAI: oai:DiVA.org:uu-231857DiVA: diva2:745423
Available from: 2014-09-10 Created: 2014-09-10 Last updated: 2015-01-23
In thesis
1. Inferring Ancestry: Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life
Open this publication in new window or tab >>Inferring Ancestry: Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There are ~12 supergroups of complex-celled organisms (eukaryotes), but relationships among them (including the root) remain elusive. For Paper I, I developed a dataset of 37 eukaryotic proteins of bacterial origin (euBac), representing the conservative protein core of the proto-mitochondrion. This gives a relatively short distance between ingroup (eukaryotes) and outgroup (mitochondrial progenitor), which is important for accurate rooting. The resulting phylogeny reconstructs three eukaryote megagroups and places one, Discoba (Excavata), as sister group to the other two (neozoa). This rejects the reigning “Unikont-Bikont” root and highlights the evolutionary importance of Excavata.

For Paper II, I developed a 150-gene dataset to test relationships in supergroup SAR (Stramenopila, Alveolata, Rhizaria). Analyses of all 150-genes give different trees with different methods, but also reveal artifactual signal due to extremely long rhizarian branches and illegitimate sequences due to horizontal gene transfer (HGT) or contamination. Removing these artifacts leads to strong consistent support for Rhizaria+Alveolata. This breaks up the core of the chromalveolate hypothesis (Stramenopila+Alveolata), adding support to theories of multiple secondary endosymbiosis of chloroplasts.

For Paper III, I studied the evolution of cox15, which encodes the essential mitochondrial protein Heme A synthase (HAS). HAS is nuclear encoded (nc-cox15) in all aerobic eukaryotes except Andalucia godoyi (Jakobida, Excavata), which encodes it in mitochondrial DNA (mtDNA) (mt-cox15). Thus the jakobid gene was postulated to represent the ancestral gene, which gave rise to nc-cox15 by endosymbiotic gene transfer. However, our phylogenetic and structure analyses demonstrate an independent origin of mt-cox15, providing the first strong evidence of bacteria to mtDNA HGT.

Rickettsiales or SAR11 often appear as sister group to modern mitochondria. However these bacteria and mitochondria also have independently evolved AT-rich genomes. For Paper IV, I assembled a dataset of 55 mitochondrial proteins of clear α-proteobacterial origin (including 30 euBacs). Phylogenies from these data support mitochondria+Rickettsiales but disagree on the placement of SAR11. Reducing amino-acid compositional heterogeneity (resulting from AT-bias) stabilizes SAR11 but moves mitochondria to the base of α-proteobacteria. Signal heterogeneity supporting other alternative hypotheses is also detected using real and simulated data. This suggests a complex scenario for the origin of mitochondria.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 48 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1176
Keyword
Molecular Phylogeny; Phylogenomics; Mitochondria; Eukaryote tree of life
National Category
Biological Systematics Evolutionary Biology
Research subject
Biology with specialization in Systematics; Biology with specialization in Molecular Evolution
Identifiers
urn:nbn:se:uu:diva-231670 (URN)978-91-554-9031-7 (ISBN)
Public defence
2014-10-24, Fries salen, Evolutionsbiologiskt centrum, Norbyvägen 18, 752 36, Uppsala, 10:30 (English)
Opponent
Supervisors
Available from: 2014-10-02 Created: 2014-09-09 Last updated: 2015-01-23

Open Access in DiVA

No full text

Authority records BETA

He, Ding

Search in DiVA

By author/editor
He, Ding
By organisation
Systematic Biology
Evolutionary BiologyBiochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 484 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf