uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energetic Tuning by tRNA Modifications Ensures Correct Decoding of Isoleucine and Methionine on the Ribosome
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
2014 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 20, no 33, 10271-10275 p.Article in journal (Refereed) Published
Abstract [en]

Chemical modifications of tRNAs are critical for accurate translation of the genetic code on the ribosome. The discrimination between isoleucine (AUA) and methionine (AUG) codons depends on such modifications of the wobble position in isoleucine tRNA anticodon loops, in all kingdoms of life. Bacteria and archaea employ functionally similar lysine- and agmatine-conjugated cytidine derivatives to ensure decoding fidelity, but the thermodynamics underlying codon discrimination remains unknown. Here, we report structure-based computer simulations that quantitatively reveal the energetics of this decoding strategy in archaea. The results further show that the agmatidine modification confers tRNA specificity primarily by desolvation of the incorrect codon in the non-cognate complex. Tautomerism is found to play no significant role in this decoding system as the usual amino form of the modified tRNA is by far the most stable.

Place, publisher, year, edition, pages
2014. Vol. 20, no 33, 10271-10275 p.
Keyword [en]
codon reading, molecular dynamics, ribosomes, tRNA modification
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-232003DOI: 10.1002/chem.201404016ISI: 000340469800015OAI: oai:DiVA.org:uu-232003DiVA: diva2:746888
Available from: 2014-09-15 Created: 2014-09-12 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Satpati, PriyadarshiBauer, PaulÅqvist, Johan

Search in DiVA

By author/editor
Satpati, PriyadarshiBauer, PaulÅqvist, Johan
By organisation
Computational and Systems Biology
In the same journal
Chemistry - A European Journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 553 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf