uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrodeposition of thin poly(propylene glycol) acrylate electrolytes on 3D-nanopillar electrodes
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
2014 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 137, 320-327 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2014. Vol. 137, 320-327 p.
Keyword [en]
3D-microbattery, Electropolymerization, Polymer electrolyte, Cu nano-pillars
National Category
Materials Chemistry
Research subject
Chemistry with specialization in Materials Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-233516DOI: 10.1016/j.electacta.2014.06.008ISI: 000341462500040OAI: oai:DiVA.org:uu-233516DiVA: diva2:752975
Available from: 2014-10-06 Created: 2014-10-06 Last updated: 2017-12-05
In thesis
1. Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries
Open this publication in new window or tab >>Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Pressing demands for high power and high energy densities in novel electrical energy storage units have caused reconsiderations regarding both the choice of battery chemistry and design. Practical concerns originating in the conventional use of flammable liquid electrolytes have renewed the interests of using solvent-free polymer electrolytes (SPEs) as solid ionic conductors for safer batteries.

In this thesis work, SPEs developed from two polymer host structures, polyethers and polycarbonates, have been investigated for all-solid-state Li- and Li-ion battery applications. In the first part, functional polyether-based polymer electrolytes, such as poly(propylene glycol) triamine based oligomer and poly(propylene oxide)-based acrylates, were investigated for 3D-microbattery applications. The amine end-groups were favorable for forming conformal electrolyte coatings onto 3D electrodes via self-assembly. In-situ polymerization methods such as UV-initiated and electro-initiated polymerization techniques also showed potential to deposit uniform and conformal polymer coatings with thicknesses down to nano-dimensions.

Moreover, poly(trimethylene carbonate) (PTMC), an alternative to the commonly investigated polyether host materials, was synthesized for SPE applications and showed promising functionality as battery electrolyte. High-molecular-weight PTMC was first applied in LiFePO4-based batteries. By incorporating an oligomeric PTMC as an interfacial mediator, enhanced surface contacts at the electrode/SPE interfaces and obvious improvements in initial capacities were realized. In addition, room-temperature functionality of PTMC-based SPEs was explored through copolymerization of ε-caprolactone (CL) with TMC. Stable cycling performance at ambient temperatures was confirmed in P(TMC/CL)-based LiFePO4 half cells (e.g., around 80 and 150 mAh g-1 at 22 °C and 40 °C under C/20 rate, respectively). Through functionalization, hydroxyl-capped PTMC demonstrated good surface adhesion to metal oxides and was applied on non-planar electrodes. Ionic transport behavior in polycarbonate-SPEs was examined by both experimental and computational approaches. A coupling of Li ion transport with the polymer chain motions was demonstrated.

The final part of this work has been focused on exploring the key characteristics of the electrode/SPE interfacial chemistry using PEO and PTMC host materials, respectively. X-ray photoelectron spectroscopy (XPS) was used to get insights on the compositions of the interphase layers in both graphite and LiFePO4 half cells.  

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 89 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1243
Keyword
Polymer electrolyte, Li-battery, 3D-microbattery, Functionalization, Polyether, Polycarbonate, Copolymer
National Category
Materials Chemistry
Research subject
Chemistry with specialization in Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-248084 (URN)978-91-554-9215-1 (ISBN)
Public defence
2015-05-22, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2015-04-28 Created: 2015-03-26 Last updated: 2015-07-07
2. Insights into Electrochemical Energy Storage by use of Nanostructured Electrodes
Open this publication in new window or tab >>Insights into Electrochemical Energy Storage by use of Nanostructured Electrodes
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Template-assisted electrodeposition is a powerful technique for fabricating complex nanostructured electrodes. Through the use of pulsed-electrodeposition nanostructured electrodes of Al, Cu and Sn have been realised and subsequently coated electrochemically with V2O5, MnxO, Li, Cu2O and a polymer electrolyte. Nanorods with a multi-layered Cu2O/Cu structure have likewise been produced through electrodeposition. Nanostructured electrodes are ideal for studying electrochemical energy storage and have as such been used to investigate the electrochemistry of conversion and alloying reactions in detail.

Key properties of the Cu2O conversion reaction were found to be dependent on the particle size. Prolonged cycling was seen to induce an electrochemical milling process which reduced the particle size. This process was found to improve the cell capacity retention due to improved accessibility of the material. The redox potential at which the particles react was found to be size dependent as smaller particles reacted at lower potentials.

The Li-alloying reaction was also investigated by analysing several different alloy-forming materials. All materials exhibited a decline in capacity during cell cycling. This decline was observed to be time dependent and could as such be explained by a diffusion limited process. Moreover, the capacity losses were found to occur during partial lithiation of the electrode material leading to Li trapping in the electrode material. Li trapping was also observed for commonly used anode current collectors as the metals have some solubility for Li. Conducting boron-doped diamond electrodes were however seen to be resistant to Li diffusion and are therefore recommended as viable current collectors for anodes handling metallic lithium (i.e. Li-alloys and Li metal).

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 79 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1297
National Category
Inorganic Chemistry
Research subject
Chemistry with specialization in Inorganic Chemistry
Identifiers
urn:nbn:se:uu:diva-263482 (URN)978-91-554-9352-3 (ISBN)
Public defence
2015-11-20, Häggsalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2015-10-28 Created: 2015-09-30 Last updated: 2015-11-10

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sun, BingRehnlund, DavidLacey, Matthew J.Brandell, Daniel

Search in DiVA

By author/editor
Sun, BingRehnlund, DavidLacey, Matthew J.Brandell, Daniel
By organisation
Structural ChemistryInorganic Chemistry
In the same journal
Electrochimica Acta
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1408 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf