uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Plant Ecology and Evolution.
2014 (English)In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 23, no 17, 4304-4315 p.Article in journal (Refereed) Published
Abstract [en]

Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade-offs across environments, but little is known about the traits and genes underlying fitness trade-offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade-offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade-off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade-offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade-off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade-off in nature.

Place, publisher, year, edition, pages
2014. Vol. 23, no 17, 4304-4315 p.
Keyword [en]
abiotic stress, adaptation, antagonistic pleiotropy, cold acclimation, cost of resistance, C-repeat-binding factor
National Category
Biochemistry and Molecular Biology Ecology
URN: urn:nbn:se:uu:diva-233001DOI: 10.1111/mec.12862ISI: 000341176200012OAI: oai:DiVA.org:uu-233001DiVA: diva2:754577
Available from: 2014-10-10 Created: 2014-09-29 Last updated: 2014-10-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ågren, Jon
By organisation
Plant Ecology and Evolution
In the same journal
Molecular Ecology
Biochemistry and Molecular BiologyEcology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 144 hits
ReferencesLink to record
Permanent link

Direct link