uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Mechanics.
Show others and affiliations
2014 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 6, no 21, 13068-13075 p.Article in journal (Refereed) Published
Abstract [en]

It is demonstrated that 3D nanostructured polypyrrole (3D PPy) nanocomposites can be reinforced with PPy covered nanocellulose (PPy@nanocellulose) fibres to yield freestanding, mechanically strong and porosity optimised electrodes with large surface areas. Such PPy@nanocellulose reinforced 3D PPy materials can be employed as free-standing paper-like electrodes in symmetric energy storage devices exhibiting cell capacitances of 46 F g(-1), corresponding to specific electrode capacitances of up to ∼185 F g(-1) based on the weight of the electrode, and 5.5 F cm(-2) at a current density of 2 mA cm(-2). After 3000 charge/discharge cycles at 30 mA cm(-2), the reinforced 3D PPy electrode material also showed a cell capacitance corresponding to 92% of that initially obtained. The present findings open up new possibilities for the fabrication of high performance, low-cost and environmentally friendly energy-storage devices based on nanostructured paper-like materials.

Place, publisher, year, edition, pages
2014. Vol. 6, no 21, 13068-13075 p.
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-234651DOI: 10.1039/c4nr04642kISI: 000344997500104PubMedID: 25248090OAI: oai:DiVA.org:uu-234651DiVA: diva2:757388
Available from: 2014-10-22 Created: 2014-10-22 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Wang, ZhaohuiTammela, PetterZhang, PengHuo, JinxingEricson, FredricStrömme, MariaNyholm, Leif

Search in DiVA

By author/editor
Wang, ZhaohuiTammela, PetterZhang, PengHuo, JinxingEricson, FredricStrömme, MariaNyholm, Leif
By organisation
Inorganic ChemistryNanotechnology and Functional MaterialsApplied MechanicsMicrosystems Technology
In the same journal
Nanoscale
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1228 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf