uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electric Vehicle Charging and Photovoltaic Power Production from Eight Solar Charging Stations in Sweden
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics. (BEESG)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics. (BEESG)
(Solelia Greentech AB)
2014 (English)In: 4th Solar Integration Workshop: Proceedings of the 4th International Workshop on Integration of Solar Power into Power Systems, Darmstadt: Energynautics , 2014, 425-429 p.Conference paper, Published paper (Refereed)
Abstract [en]

This paper quantifies and analyzes data for electric vehicle (EV) charging and photovoltaic(PV) power production from eight charging stations in Sweden withadjacent PV power production provided by Solelia Greentech AB. This study aims toshow the grid interaction of EV charging and PV power production from these solar charging stationswhich are distributed in pairs at four different locations across Sweden. This study utilizesone minute resolution data on power consumption and production from between 281 and310 consecutive days depending on available solar charging station data. Each site, correspondingto two adjacent solar charging stations, has a specific setup regarding EV charging consumer availability.EV charging at two of the sites were available only for the local company/municipality employees and visitors to the company/municipalitywhile the other two sites were public. There was no economical charge for EV charging at any of the stations.Results show that EV charging magnitude and use patterns over timevaried considerably between the stations. Half of the stations had a net consumption of electricityand the other half of stations had a net production of electricity during the metering period.Self-consumption of PV power production was estimated to be between 0.2 and 10 percentdepending on station.

Place, publisher, year, edition, pages
Darmstadt: Energynautics , 2014. 425-429 p.
Keyword [en]
Elbilsladdning, solelproduktion, dataanalys
National Category
Engineering and Technology
Research subject
Engineering Science
Identifiers
URN: urn:nbn:se:uu:diva-236889ISBN: 978-3-9816549-0-5 (print)OAI: oai:DiVA.org:uu-236889DiVA: diva2:765849
Conference
4th International Workshop on Integration of Solar into Power Systems, 10-11 November 2014, Berlin, Germany
Available from: 2014-11-25 Created: 2014-11-25 Last updated: 2016-05-27Bibliographically approved
In thesis
1. Distributed Photovoltaics, Household Electricity Use and Electric Vehicle Charging: Mathematical Modeling and Case Studies
Open this publication in new window or tab >>Distributed Photovoltaics, Household Electricity Use and Electric Vehicle Charging: Mathematical Modeling and Case Studies
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Technological improvements along with falling prices on photovoltaic (PV) panels and electric vehicles (EVs) suggest that they might become more common in the future. The introduction of distributed PV power production and EV charging has a considerable impact on the power system, in particular at the end-user in the electricity grid.

In this PhD thesis PV power production, household electricity use and EV charging are investigated on different system levels. The methodologies used in this thesis are interdisciplinary but the main contributions are mathematical modeling, simulations and data analysis of these three components and their interactions. Models for estimating PV power production, household electricity use, EV charging and their combination are developed using data and stochastic modeling with Markov chains and probability distributions. Additionally, data on PV power production and EV charging from eight solar charging stations is analyzed.

Results show that the clear-sky index for PV power production applications can be modeled via a bimodal Normal probability distribution, that household electricity use can be modeled via either Weibull or Log-normal probability distributions and that EV charging can be modeled by Bernoulli probability distributions. Complete models of PV power production, household electricity use and EV home-charging are developed with both Markov chain and probability distribution modeling. It is also shown that EV home-charging can be modeled as an extension to the Widén Markov chain model for generating synthetic household electricity use patterns. Analysis of measurements from solar charging stations show a wide variety of EV charging patterns. Additionally an alternative approach to modeling the clear-sky index is introduced and shown to give a generalized Ångström equation relating solar irradiation to the duration of bright sunshine.

Analysis of the total power consumption/production patterns of PV power production, household electricity use and EV home-charging at the end-user in the grid highlights the dependency between the components, which quantifies the mismatch issue of distributed intermittent power production and consumption. At an aggregate level of households the level of mismatch is shown to be lower.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 93 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1224
Keyword
Distributed Photovoltaics, Household Electricity Use, Electric Vehicle Charging, Markov Chain Modeling, Probability Distribution Modeling, Data Analysis, Self-Consumption, Grid Interaction.
National Category
Energy Systems
Research subject
Engineering Science
Identifiers
urn:nbn:se:uu:diva-243159 (URN)978-91-554-9162-8 (ISBN)
Public defence
2015-03-27, Polhemsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2015-03-04 Created: 2015-02-05 Last updated: 2015-03-12Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Munkhammar, JoakimWidén, Joakim

Search in DiVA

By author/editor
Munkhammar, JoakimWidén, Joakim
By organisation
Solid State Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 903 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf