uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Inorganic Chemistry.
Show others and affiliations
2014 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 26, no 41, 415501- p.Article in journal (Refereed) Published
Abstract [en]

The crystal structure and chemical bonding of magnetron-sputtering deposited nickel carbide Ni1-xCx (0.05 <= x <= 0.62) thin films have been investigated by high-resolution x-ray diffraction, transmission electron microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, and soft x-ray absorption spectroscopy. By using x-ray as well as electron diffraction, we found carbon-containing hcp-Ni (hcp-NiCy phase), instead of the expected rhombohedral-Ni3C. At low carbon content (4.9 at%), the thin film consists of hcp-NiCy nanocrystallites mixed with a smaller amount of fcc-NiCx. The average grain size is about 10-20 nm. With the increase of carbon content to 16.3 at%, the film contains single-phase hcp-NiCy nanocrystallites with expanded lattice parameters. With a further increase of carbon content to 38 at%, and 62 at%, the films transform to x-ray amorphous materials with hcp-NiCy and fcc-NiCx nanodomain structures in an amorphous carbon-rich matrix. Raman spectra of carbon indicate dominant sp(2) hybridization, consistent with photoelectron spectra that show a decreasing amount of C-Ni phase with increasing carbon content. The Ni 3d-C 2p hybridization in the hexagonal structure gives rise to the salient double-peak structure in Ni 2p soft x-ray absorption spectra at 16.3 at% that changes with carbon content. We also show that the resistivity is not only governed by the amount of carbon, but increases by more than a factor of two when the samples transform from crystalline to amorphous.

Place, publisher, year, edition, pages
2014. Vol. 26, no 41, 415501- p.
Keyword [en]
amorphous nanocomposites, thin film coatings, transition metal carbides, magnetron sputtering
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-237305DOI: 10.1088/0953-8984/26/41/415501ISI: 000343423600004PubMedID: 25237716OAI: oai:DiVA.org:uu-237305DiVA: diva2:768072
Available from: 2014-12-03 Created: 2014-12-01 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Jansson, Ulf

Search in DiVA

By author/editor
Jansson, Ulf
By organisation
Inorganic Chemistry
In the same journal
Journal of Physics: Condensed Matter
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 768 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf