uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Strain heterogeneity and magnetoelastic behaviour of nanocrystalline half-doped La, Ca manganite, La0.5Ca0.5MnO3
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Show others and affiliations
2014 (English)In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 26, no 43, 435303- p.Article in journal (Refereed) Published
Abstract [en]

Elastic and anelastic properties of La0.5Ca0.5MnO3 determined by resonant ultrasound spectroscopy in the frequency range similar to 100-1200 kHz have been used to evaluate the role of grain size in determining the competition between ferromagnetism and Jahn-Teller/charge order of manganites which show colossal magneto resistance. At crystallite sizes of similar to 75 and similar to 135 nm the dominant feature is softening of the shear modulus as the charge order transition point, T-co (similar to 225 K), is approached from above and below, matching the form of softening seen previously in samples with 'bulk' properties. This is consistent with a bilinear dominant strain/order parameter coupling, which occurs between the tetragonal shear strain and the Jahn-Teller (Gamma(+)(3)) order parameter. At crystallite sizes of similar to 34 and similar to 42 nm the charge ordered phase is suppressed but there is still softening of the shear modulus, with a minimum near Tco. This indicates that some degree of pseudoproper ferroelastic behaviour is retained. The primary cause of the suppresion of the charge ordered structure in nanocrystalline samples is therefore considered to be due to suppression of macroscopic strain, even though MnO6 octahedra must develop some Jahn-Teller distortions on a local length scale. This mechanism for stabilizing ferromagnetism differs from imposition of either an external magnetic field or a homogeneous external strain field (from a substrate), and is likely to lead both to local strain heterogeneity within the nanocrystallites and to different tilting of octahedra within the orthorhombic structure. An additional first order transition occurs near 40K in all samples and appears to involve some very small strain contrast between two ferromagnetic structures.

Place, publisher, year, edition, pages
2014. Vol. 26, no 43, 435303- p.
Keyword [en]
elastic properties, size effect, magnetic properties
National Category
Physical Sciences Engineering and Technology
Research subject
Engineering Science with specialization in Solid State Physics
URN: urn:nbn:se:uu:diva-237296DOI: 10.1088/0953-8984/26/43/435303ISI: 000343643600006PubMedID: 25299746OAI: oai:DiVA.org:uu-237296DiVA: diva2:768253
Available from: 2014-12-03 Created: 2014-12-01 Last updated: 2014-12-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Sarkar, Tapati
By organisation
Solid State Physics
In the same journal
Journal of Physics: Condensed Matter
Physical SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 430 hits
ReferencesLink to record
Permanent link

Direct link