uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics. Uppsala University, Science for Life Laboratory, SciLifeLab.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC, Analytical Chemistry. Uppsala University, Science for Life Laboratory, SciLifeLab.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics. Uppsala University, Science for Life Laboratory, SciLifeLab.
2014 (English)In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 15, 1064Article in journal (Refereed) Published
Abstract [en]

BACKGROUND:

In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts.

RESULTS:

Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme.

CONCLUSIONS:

The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.

Place, publisher, year, edition, pages
2014. Vol. 15, 1064
National Category
Microbiology Botany Analytical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-238129DOI: 10.1186/1471-2164-15-1064ISI: 000349257400001PubMedID: 25476978OAI: oai:DiVA.org:uu-238129DiVA: diva2:770090
Available from: 2014-12-09 Created: 2014-12-09 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

fulltext(979 kB)215 downloads
File information
File name FULLTEXT01.pdfFile size 979 kBChecksum SHA-512
3c8035230b929a7140ea1be5f63863103032958fde07b3b08a83df53829f2431c91d38201751f41dee7919239c067d891b06e8f8f8da0c36486898bacf8c248b
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records BETA

Sandh, GustafRamström, MargaretaStensjö, Karin

Search in DiVA

By author/editor
Sandh, GustafRamström, MargaretaStensjö, Karin
By organisation
Molecular BiomimeticsScience for Life Laboratory, SciLifeLabAnalytical Chemistry
In the same journal
BMC Genomics
MicrobiologyBotanyAnalytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 215 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 869 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf