uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Cardiomyocyte-specific Loss of Diacylglycerol Acyltransferase 1 (DGAT1) Reproduces the Abnormalities in Lipids Found in Severe Heart Failure
Show others and affiliations
2014 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 289, no 43, 29881-29891 p.Article in journal (Refereed) Published
Abstract [en]

Background: Total body DGAT1 mice have no cardiac phenotype. Results: Cardiomyocyte DGAT1 knock-out mice have increased mortality and accumulation of potentially toxic lipids, which were corrected by intestinal DGAT1 deletion and GLP-1 receptor agonists. Conclusion: Cardiomyocyte DGAT1 deletion produces heart dysfunction and lipid abnormalities. Significance: Lipotoxicity in the heart can be alleviated by changes in intestinal metabolism. Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis, the conversion of diacylglycerol (DAG) to triglyceride. Dgat1(-/-) mice exhibit a number of beneficial metabolic effects including reduced obesity and improved insulin sensitivity and no known cardiac dysfunction. In contrast, failing human hearts have severely reduced DGAT1 expression associated with accumulation of DAGs and ceramides. To test whether DGAT1 loss alone affects heart function, we created cardiomyocyte-specific DGAT1 knock-out (hDgat1(-/-)) mice. hDgat1(-/-) mouse hearts had 95% increased DAG and 85% increased ceramides compared with floxed controls. 50% of these mice died by 9 months of age. The heart failure marker brain natriuretic peptide increased 5-fold in hDgat1(-/-) hearts, and fractional shortening (FS) was reduced. This was associated with increased expression of peroxisome proliferator-activated receptor and cluster of differentiation 36. We crossed hDgat1(-/-) mice with previously described enterocyte-specific Dgat1 knock-out mice (hiDgat1(-/-)). This corrected the early mortality, improved FS, and reduced cardiac ceramide and DAG content. Treatment of hDgat1(-/-) mice with the glucagon-like peptide 1 receptor agonist exenatide also improved FS and reduced heart DAG and ceramide content. Increased fatty acid uptake into hDgat1(-/-) hearts was normalized by exenatide. Reduced activation of protein kinase C (PKC), which is increased by DAG and ceramides, paralleled the reductions in these lipids. Our mouse studies show that loss of DGAT1 reproduces the lipid abnormalities seen in severe human heart failure.

Place, publisher, year, edition, pages
2014. Vol. 289, no 43, 29881-29891 p.
Keyword [en]
Animal Model, Cardiac Metabolism, Ceramide, Diacylglycerol, Heart Failure, Lipid, Lipotoxicity, Metabolism, Signal Transduction
National Category
Endocrinology and Diabetes Cardiac and Cardiovascular Systems
URN: urn:nbn:se:uu:diva-238562DOI: 10.1074/jbc.M114.601864ISI: 000344370800032PubMedID: 25157099OAI: oai:DiVA.org:uu-238562DiVA: diva2:772767
Available from: 2014-12-17 Created: 2014-12-14 Last updated: 2014-12-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Eriksson, Jan W.
By organisation
Clinical diabetology and metabolism
In the same journal
Journal of Biological Chemistry
Endocrinology and DiabetesCardiac and Cardiovascular Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 194 hits
ReferencesLink to record
Permanent link

Direct link