uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Defining the Human Adipose Tissue Proteome To Reveal Metabolic Alterations in Obesity
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology.
Show others and affiliations
2014 (English)In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 13, no 11, 5106-5119 p.Article in journal (Refereed) Published
Abstract [en]

White adipose tissue (WAT) has a major role in the progression of obesity. Here, we combined data from RNA-Seq and antibody-based immunohistochemistry to describe the normal physiology of human WAT obtained from three female subjects and explored WAT-specific genes by comparing WAT to 26 other major human tissues. Using the protein evidence in WAT, we validated the content of a genome-scale metabolic model for adipocytes. We employed this high-quality model for the analysis of subcutaneous adipose tissue (SAT) gene expression data obtained from subjects included in the Swedish Obese Subjects Sib Pair study to reveal molecular differences between lean and obese individuals. We integrated SAT gene expression and plasma metabolomics data, investigated the contribution of the metabolic differences in the mitochondria of SAT to the occurrence of obesity, and eventually identified cytosolic branched-chain amino acid (BCAA) transaminase 1 as a potential target that can be used for drug development. We observed decreased glutaminolysis and alterations in the BCAAs metabolism in SAT of obese subjects compared to lean subjects. We also provided mechanistic explanations for the changes in the plasma level of BCAAs, glutamate, pyruvate, and alpha-ketoglutarate in obese subjects. Finally, we validated a subset of our model-based predictions in 20 SAT samples obtained from 10 lean and 10 obese male and female subjects.

Place, publisher, year, edition, pages
2014. Vol. 13, no 11, 5106-5119 p.
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-239571DOI: 10.1021/pr500586eISI: 000344636500055PubMedID: 25219818OAI: oai:DiVA.org:uu-239571DiVA: diva2:775125
Available from: 2014-12-30 Created: 2014-12-29 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Kampf, CarolineAsplund, AnnaPontén, Fredrik

Search in DiVA

By author/editor
Kampf, CarolineAsplund, AnnaPontén, Fredrik
By organisation
Molecular and Morphological Pathology
In the same journal
Journal of Proteome Research
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 536 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf