uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of Three-level Buck-Boost Converter Operation for Improved Renewable Energy Conversion and Smart Grid Integration
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Show others and affiliations
2014 (English)In: 2014 IEEE International Energy Conference (ENERGYCON 2014), IEEE conference proceedings, 2014, 76-81 p.Conference paper, Published paper (Refereed)
Abstract [en]

The increased smart grid integration of renewable energy sources demands high power handling and wide controllability for the enabling power conversion technologies. The conventional energy conversion techniques are inadequate to efficiently handle the highly varying nature of renewable energy sources like wave, solar, tidal and wind. The present work examines the advantages of using a three-level buck-boost DC-DC converter to aid three-level neutral-point-clamped inverter based grid integration. There are two main reasons for using this converter. It can provide the conventional buck-boost capability at higher power levels for absorbing and conditioning the renewable source output. Besides, it can be used as a voltage balancing device to satisfy the input requirement for the three-level neutral-point-clamped inverter. The work includes complete operating range analysis of the converter for the combined buck-boost action and voltage balancing effects to understand its suitability for various applications. The converter switching modes of operation are also presented in detail along with essential example waveforms. The final results show good controllability bandwidth for the converter which makes it an attractive solution for smart grid integration of renewable energy sources.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2014. 76-81 p.
Series
IEEE International Energy Conference, ISSN 2164-4322 ; 76-81
Keyword [en]
Three-level buck-boost converter, Renewable energy conversion, Smart grid integration, Neutral-point-clamped inverter
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-240677DOI: 10.1109/ENERGYCON.2014.6850409ISI: 000343646400013ISBN: 978-1-4799-2449-3 (print)OAI: oai:DiVA.org:uu-240677DiVA: diva2:776943
Conference
IEEE International Energy Conference (ENERGYCON), MAY 13-16, 2014, Dubrovnik, CROATIA
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Available from: 2015-01-08 Created: 2015-01-08 Last updated: 2017-11-01
In thesis
1. Multilevel Power Converters with Smart Control for Wave Energy Conversion
Open this publication in new window or tab >>Multilevel Power Converters with Smart Control for Wave Energy Conversion
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The main focus of this thesis is on the power electronic converter system challenges associated with the grid integration of variable-renewable-energy (VRE) sources like wave, marine current, tidal, wind, solar etc. Wave energy conversion with grid integration is used as the key reference, considering its high energy potential to support the future clean energy requirements and due the availability of a test facility at Uppsala University. The emphasis is on the DC-link power conditioning and grid coupling of direct driven wave energy converters (DDWECs). The DDWEC reflects the random nature of its input energy to its output voltage wave shape. Thereby, it demands for intelligent power conversion techniques to facilitate the grid connection.

One option is to improve and adapt an already existing, simple and reliable multilevel power converter technology, using smart control strategies. The proposed WECs to grid interconnection system consists of uncontrolled three-phase rectifiers, three-level boost converter(TLBC) or three-level buck-boost converter (TLBBC) and a three-level neutral point clamped (TLNPC) inverter. A new method for pulse delay control for the active balancing of DC-link capacitor voltages by using TLBC/TLBBC is presented. Duty-ratio and pulse delay control methods are combined for obtaining better voltage regulation at the DC-link and for achieving higher controllability range. The classic voltage balancing problem of the NPC inverter input, is solved efficiently using the above technique. A synchronous current compensator is used for the NPC inverter based grid coupling. Various results from both simulation and hardware testing show that the required power conditioning and power flow control can be obtained from the proposed multilevel multistage converter system.

The entire control strategies are implemented in Xilinx Virtex 5 FPGA, inside National Instruments’ CompactRIO system using LabVIEW. A contour based dead-time harmonic analysis method for TLNPC and the possibilities of having various interconnection strategies of WEC-rectifier units to complement the power converter efforts for stabilizing the DC-link, are also presented. An advanced future AC2AC direct power converter system based on Modular multilevel converter (MMC) structure developed at Siemens AG is presented briefly to demonstrate the future trends in this area.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 98 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1597
Keyword
Multilevel power converter, FPGA control, Wave Energy, Three-level boost converter, Three-level buck-boost converter, Variable-renewable-energy, Three-level neutral point clamped inverter, Linear generator, DC-link, AC2AC direct converter, Modular multilevel converter
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-332730 (URN)978-91-513-0146-4 (ISBN)
Public defence
2017-12-04, Room 80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Available from: 2017-11-13 Created: 2017-11-01 Last updated: 2017-11-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Soman, Deepak ElamalayilKrishna, RemyaGabrysch, MarkusLeijon, Mats

Search in DiVA

By author/editor
Soman, Deepak ElamalayilKrishna, RemyaGabrysch, MarkusLeijon, Mats
By organisation
Electricity
Electrical Engineering, Electronic Engineering, Information EngineeringEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 418 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf