uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Convergence Rates for Loop-Erased Random Walk and Other Loewner CurvesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: Annals of Probability, ISSN 0091-1798, E-ISSN 2168-894X, Vol. 43, no 1, 119-165 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2015. Vol. 43, no 1, 119-165 p.
##### Keyword [en]

Schramm-Loewner evolution, loop-erased random walk, Loewner equation
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:uu:diva-241932DOI: 10.1214/13-AOP872ISI: 000346325600004OAI: oai:DiVA.org:uu-241932DiVA: diva2:783448
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2015-01-26 Created: 2015-01-19 Last updated: 2016-02-17Bibliographically approved

We estimate convergence rates for curves generated by Loewner's differential equation under the basic assumption that a convergence rate for the driving terms is known. An important tool is what we call the tip structure modulus, a geometric measure of regularity for Loewner curves parameterized by capacity. It is analogous to Warschawski's boundary structure modulus and closely related to annuli crossings. The main application we have in mind is that of a random discrete-model curve approaching a Schramm-Loewner evolution (SLE) curve in the lattice size scaling limit. We carry out the approach in the case of loop-erased random walk (LERW) in a simply connected domain. Under mild assumptions of boundary regularity, we obtain an explicit power-law rate for the convergence of the LERW path toward the radial SLE2 path in the supremum norm, the curves being parameterized by capacity. On the deterministic side, we show that the tip structure modulus gives a sufficient geometric condition for a Loewner curve to be Holder continuous in the capacity parameterization, assuming its driving term is Holder continuous. We also briefly discuss the case when the curves are a priori known to be Holder continuous in the capacity parameterization and we obtain a power-law convergence rate depending only on the regularity of the curves.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});