uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Convergence Rates for Loop-Erased Random Walk and Other Loewner Curves
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Analysis and Probability Theory.
2015 (English)In: Annals of Probability, ISSN 0091-1798, E-ISSN 2168-894X, Vol. 43, no 1, 119-165 p.Article in journal (Refereed) Published
Abstract [en]

We estimate convergence rates for curves generated by Loewner's differential equation under the basic assumption that a convergence rate for the driving terms is known. An important tool is what we call the tip structure modulus, a geometric measure of regularity for Loewner curves parameterized by capacity. It is analogous to Warschawski's boundary structure modulus and closely related to annuli crossings. The main application we have in mind is that of a random discrete-model curve approaching a Schramm-Loewner evolution (SLE) curve in the lattice size scaling limit. We carry out the approach in the case of loop-erased random walk (LERW) in a simply connected domain. Under mild assumptions of boundary regularity, we obtain an explicit power-law rate for the convergence of the LERW path toward the radial SLE2 path in the supremum norm, the curves being parameterized by capacity. On the deterministic side, we show that the tip structure modulus gives a sufficient geometric condition for a Loewner curve to be Holder continuous in the capacity parameterization, assuming its driving term is Holder continuous. We also briefly discuss the case when the curves are a priori known to be Holder continuous in the capacity parameterization and we obtain a power-law convergence rate depending only on the regularity of the curves.

Place, publisher, year, edition, pages
2015. Vol. 43, no 1, 119-165 p.
Keyword [en]
Schramm-Loewner evolution, loop-erased random walk, Loewner equation
National Category
Probability Theory and Statistics
URN: urn:nbn:se:uu:diva-241932DOI: 10.1214/13-AOP872ISI: 000346325600004OAI: oai:DiVA.org:uu-241932DiVA: diva2:783448
Available from: 2015-01-26 Created: 2015-01-19 Last updated: 2016-02-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Viklund, Fredrik Johansson
By organisation
Analysis and Probability Theory
In the same journal
Annals of Probability
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 194 hits
ReferencesLink to record
Permanent link

Direct link