uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bayesian model averaging of adaptive bandwidth kernel density estimators yields state-of-the-art performance
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.ORCID iD: 0000-0002-9615-5079
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine.
(English)Manuscript (preprint) (Other academic)
Keyword [en]
Variable kernel density estimation, adaptive kernel density estimation, Bayesian model averaging, variable bandwidth, square root law
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:uu:diva-242354OAI: oai:DiVA.org:uu-242354DiVA: diva2:783768
Funder
Swedish Foundation for Strategic Research , RBc08-008EU, FP7, Seventh Framework Programme, PROACTIVE
Available from: 2015-01-27 Created: 2015-01-25 Last updated: 2015-03-11
In thesis
1. Machine Learning Based Analysis of DNA Methylation Patterns in Pediatric Acute Leukemia
Open this publication in new window or tab >>Machine Learning Based Analysis of DNA Methylation Patterns in Pediatric Acute Leukemia
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Maskininlärningsbaserad analys av DNA-metyleringsmönster i pediatrisk akut lymfatisk leukemi
Abstract [en]

Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer in the Nordic countries. Recent evidence indicate that DNA methylation (DNAm) play a central role in the development and progression of the disease.

DNAm profiles of a collection of ALL patient samples and a panel of non-leukemic reference samples were analyzed using the Infinium 450k methylation assay. State-of-the-art machine learning algorithms were used to search the large amounts of data produced for patterns predictive of future relapses, in vitro drug resistance, and cytogenetic subtypes, aiming at improving our understanding of the disease and ultimately improving treatment.

In paper I, the predictive modeling framework developed to perform the analyses of DNAm dataset was presented. It focused on uncompromising statistical rigor and computational efficiency, while allowing a high level of modeling flexibility and usability. In paper II, the DNAm landscape of ALL was comprehensively characterized, discovering widespread aberrant methylation at diagnosis strongly influenced by cytogenetic subtype. The aberrantly methylated regions were enriched for genes repressed by polycomb group proteins, repressively marked histones in healthy cells, and genes associated with embryonic development. A consistent trend of hypermethylation at relapse was also discovered. In paper III, a tool for DNAm-based subtyping was presented, validated using blinded samples and used to re-classify samples with incomplete phenotypic information. Using RNA-sequencing, previously undetected non-canonical aberrations were found in many re-classified samples. In paper IV, the relationship between DNAm and in vitro drug resistance was investigated and predictive signatures were obtained for seven of the eight therapeutic drugs studied. Interpretation was challenging due to poor correlation between DNAm and gene expression, further complicated by the discovery that random subsets of the array can yield comparable classification accuracy. Paper V presents a novel Bayesian method for multivariate density estimation with variable bandwidths. Simulations showed comparable performance to the current state-of-the-art methods and an advantage on skewed distributions.

In conclusion, the studies characterize the information contained in the aberrant DNAm patterns of ALL and assess its predictive capabilities for future relapses, in vitro drug sensitivity and subtyping. They also present three publicly available tools for the scientific community to use.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 68 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1069
National Category
Bioinformatics (Computational Biology) Hematology Cancer and Oncology
Identifiers
urn:nbn:se:uu:diva-242544 (URN)978-91-554-9151-2 (ISBN)
Public defence
2015-03-13, Auditorium minus, Museum Gustavianum, Akademigatan 3, Uppsala, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research , RBc08-008
Available from: 2015-02-19 Created: 2015-01-27 Last updated: 2015-03-27Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Bäcklin, Christofer

Search in DiVA

By author/editor
Bäcklin, Christofer
By organisation
Cancer Pharmacology and Computational Medicine
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 476 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf