uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cost and stability core restricted active space calculations of L-edge X-ray absorption spectra.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Theoretical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Theoretical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Theoretical Chemistry.
Stockholm university.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Theoretical Chemistry
Research subject
Chemistry with specialization in Quantum Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-243570OAI: oai:DiVA.org:uu-243570DiVA: diva2:787588
Available from: 2015-02-10 Created: 2015-02-10 Last updated: 2015-03-13
In thesis
1. Extending the Reach of Accurate Wavefunction Methods
Open this publication in new window or tab >>Extending the Reach of Accurate Wavefunction Methods
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Multiconfigurational quantum chemistry methods, and especially the multiconfigurational self-consistent field (MCSCF) and multireference perturbation theory (MRPT2), are powerful tools, particularly suited to the accurate modeling of photochemical processes and transition metal catalysis. However, they are limited by their high computational cost compared to other methods, especially density functional theory. Moreover, there are areas where they would be expected to perform well, but where they are not applied due to lack of experience.

This thesis addresses those issues. First, the efficiency of the Cholesky decomposition approximation to reduce the cost of MCSCF and MRPT2 without sacrificing their accuracy is demonstrated. This then motivates the extension of the Cholesky approximation to the computation of MCSCF nuclear gradients, thus strongly improving the ability to perform MCSCF non-adiabatic molecular dynamics. Typically, a tenfold speed-up is observed allowing dynamic simulation of larger systems or over longer times.

Finally, multiconfigurational methods are applied to the computation of X-ray spectra of transition metal complexes. The importance of the different parameters in the calculation is systematically investigated, laying the base for wider applications of those accurate methods in the modeling of X-ray spectroscopy. A tool to analyze the resulting spectrum in terms of molecular orbitals is also presented, strengthening the interplay between theory and experiments.

With these developments and other significant ones that have happened in recent years, multiconfigurational methods can now reach new grounds and contribute to important new discoveries

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2015. 75 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1228
Keyword
Quantum chemistry, Density fitting, CASSCF, Analytical gradients, Photochemistry, X-ray spectroscopy
National Category
Theoretical Chemistry
Research subject
Chemistry with specialization in Quantum Chemistry
Identifiers
urn:nbn:se:uu:diva-243573 (URN)978-91-554-9168-0 (ISBN)
Public defence
2015-03-31, Siegbahnsalen, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2015-03-10 Created: 2015-02-10 Last updated: 2015-04-14Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Delcey, Mickaël G.

Search in DiVA

By author/editor
Delcey, Mickaël G.
By organisation
Theoretical Chemistry
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 472 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf