uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Dynamic positioning of a semi-submersible, multi-turbine wind power platform
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control.
2015 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

As a growing market for offshore wind power has created a niche for deep-water installations, offshore floating wind solutions have become more and more viable as a renewable energy source. This technology is currently in development and as with many new technologies, many traditional design methods are found lacking. In the multi-turbine platform design investigated, turbine units are placed closely together to conserve material use and reduce cost, however with such tightly spaced turbines; wake interaction poses a threat to the productivity and the lifespan of the installation. In order to fully capitalize on the substantial increase in available wind energy far at sea, it is important that these floating parks operate in an optimal way. The platform investigated in this report sports 3, 6MW turbines which must be positioned such that wake interference is minimized; the platform must always bear a windward heading. 

Maneuvering ocean going vessels has been practiced using automated dynamic positioning systems in the gas and oil industry for over 50 years, often employing submerged thrusters as a source of propulsion. These systems are mostly diesel powered and require extra operational maintenance, which would otherwise increase the cost and complexity of a floating wind farm. In this paper, it is suggested that the wind turbines themselves may be used to provide the thrust needed to correct the platform heading, thus eliminating the practical need for submerged thrusters. By controlling the blade pitch of the wind turbines, a turning moment (torque) can be exerted on the platform to correct heading (yaw) relative wind direction. Using the Hexicon H3-18MW platform as a starting point; hydrodynamic, aerodynamic and electromechanical properties of the system are explored, modeled and attempts at model predictive control are made. Preliminary results show that it is possible to control the H3’s position (in yaw) relative the wind using this novel method.

Place, publisher, year, edition, pages
UPTEC ES, ISSN 1650-8300 ; 14045
National Category
Energy Systems Marine Engineering Control Engineering
URN: urn:nbn:se:uu:diva-244728OAI: oai:DiVA.org:uu-244728DiVA: diva2:789804
Educational program
Master Programme in Energy Systems Engineering
Available from: 2015-02-20 Created: 2015-02-20 Last updated: 2015-02-20Bibliographically approved

Open Access in DiVA

Dynamic positioning of a semi-submersible, multi-turbine wind power platform(2537 kB)267 downloads
File information
File name FULLTEXT01.pdfFile size 2537 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Division of Systems and Control
Energy SystemsMarine EngineeringControl Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 267 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 867 hits
ReferencesLink to record
Permanent link

Direct link